Remaining Useful Life Prediction based on Multisource Domain Transfer and Unsupervised Alignment

被引:0
|
作者
Lv, Yi [1 ,2 ]
Zhou, Ningxu [2 ]
Wen, Zhenfei [2 ]
Shen, Zaichen [3 ]
Chen, Aiguo [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp, Zhongshan Inst, Zhongshan, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chnegdu, Peoples R China
[3] Guangdong Univ Technol, Guangzhou, Peoples R China
来源
EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY | 2025年 / 27卷 / 02期
关键词
remaining useful life prediction; multisource domain adaptation; temporal conventional network; multilinear conditioning; NETWORK; MODEL;
D O I
10.17531/ein/194116
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Transfer learning enhances remaining useful life (RUL) predictions by addressing data scarcity and operational challenges. Nonetheless, when a significant disparity in degradation data distribution exists between source and target domains, single-source domain transfer learning risks misleading or negative transfer. Multisource domain transfer learning partially addresses these issues. However, it ignores substantial discrepancies in feature-label correlations, which would impair the RUL prediction accuracy. Thus, we propose to develop a multisource domain unsupervised adaptive learning method, which is powered by a temporal convolutional network. Using a multilinear conditioning strategy, we combine degradation data and subregion labels to construct input characteristics for the domain discriminator. Additionally, we design a feature extractor that produces label-related features, invariant across domains, effectively enhancing prediction precision. We evaluate our method using the publicly available C-MAPSS degradation dataset with a case study and ablation experiments.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] An Attention-Based Method for Remaining Useful Life Prediction of Rotating Machinery
    Deng, Yaohua
    Guo, Chengwang
    Zhang, Zilin
    Zou, Linfeng
    Liu, Xiali
    Lin, Shengyu
    APPLIED SCIENCES-BASEL, 2023, 13 (04):
  • [32] A novel health indicator for intelligent prediction of rolling bearing remaining useful life based on unsupervised learning model
    Xu, Zifei
    Bashir, Musa
    Liu, Qinsong
    Miao, Zifan
    Wang, Xinyu
    Wang, Jin
    Ekere, Nduka
    COMPUTERS & INDUSTRIAL ENGINEERING, 2023, 176
  • [33] Remaining useful life prediction based on an integrated neural network
    Zhang Y.-F.
    Lu Z.-Q.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2020, 42 (10): : 1372 - 1380
  • [34] Remaining useful life prediction based on health index similarity
    Liu Yingchao
    Hu Xiaofeng
    Zhang, Wenjuan
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2019, 185 : 502 - 510
  • [35] GPT-based equipment remaining useful life prediction
    Wang, Peiwen
    Niu, Shaozhang
    Cui, Haoliang
    Zhang, Wen
    PROCEEDINGS OF THE ACM TURING AWARD CELEBRATION CONFERENCE-CHINA 2024, ACM-TURC 2024, 2024, : 159 - 164
  • [36] Remaining Useful Life Prediction Based on Deep Learning: A Survey
    Wu, Fuhui
    Wu, Qingbo
    Tan, Yusong
    Xu, Xinghua
    SENSORS, 2024, 24 (11)
  • [37] Transfer learning-based deep learning models for proton exchange membrane fuel remaining useful life prediction
    Kebede, Getnet Awoke
    Lo, Shih-Che
    Wang, Fu-Kwun
    Chou, Jia-Hong
    FUEL, 2024, 367
  • [38] Fault Knowledge Transfer Assisted Ensemble Method for Remaining Useful Life Prediction
    Xia, Pengcheng
    Huang, Yixiang
    Li, Peng
    Liu, Chengliang
    Shi, Lun
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (03) : 1758 - 1769
  • [39] Deep transfer learning in machinery remaining useful life prediction: a systematic review
    Chen, Gaige
    Kong, Xianguang
    Cheng, Han
    Yang, Shengkang
    Wang, Xianzhi
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (01)
  • [40] Unsupervised Remaining Useful Life Prediction through Long Range Health Index Estimation based on Encoders-Decoders
    de Beaulieu, Martin Herve
    Jha, Mayank Shekhar
    Garnier, Hugues
    Cerbah, Farid
    IFAC PAPERSONLINE, 2022, 55 (06): : 718 - 723