Explicit stochastic advection algorithms for the regional-scale particle-resolved atmospheric aerosol model WRF-PartMC (v1.0)

被引:0
作者
Curtis, Jeffrey H. [1 ,2 ]
Riemer, Nicole [1 ]
West, Matthew [2 ]
机构
[1] Univ Illinois, Dept Climate Meteorol & Atmospher Sci, 1301 W Green St, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Mech Sci & Engn, 1206 W Green St, Urbana, IL 61801 USA
关键词
MIXING-STATE; WRF/CHEM MODEL; REPRESENTATION; MICROPHYSICS; SIMULATION; TRANSPORT; DYNAMICS; SCHEMES; VERSION; MODULE;
D O I
10.5194/gmd-17-8399-2024
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This paper presents the development of a stochastic particle method to simulate advection in regional-scale models with a particle-resolving aerosol representation. The new method is based on finite-volume discretizations with the flux terms interpreted as probabilities of particle transport between grid cells. We analyze the method in 1D and show that the stochastic particle sampling during transport injects energy at high spatial frequencies, which can be partially compensated for with the choice of a dissipative odd-order finite-volume scheme. We then apply the stochastic third- and fifth-order advection algorithms with monotonic limiters in WRF-PartMC, using idealized and realistic wind fields in 2D and 3D. In all cases we observe the expected convergence rates of the stochastic particle method to the finite-volume solution as the number of computational particles is increased. This work enables the use of particle-based aerosol models on the regional scale.
引用
收藏
页码:8399 / 8420
页数:22
相关论文
共 56 条
  • [1] Arabas S., Jaruga A., Pawlowska H., Grabowski W. W., libcloudph++ 1.0: a single-moment bulk, double-moment bulk, and particle-based warm-rain microphysics library in C++, Geosci. Model Dev, 8, pp. 1677-1707, (2015)
  • [2] Bauer S. E., Wright D. L., Koch D., Lewis E. R., McGraw R., Chang L.-S., Schwartz S. E., Ruedy R., MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): an aerosol microphysical module for global atmospheric models, Atmos. Chem. Phys, 8, pp. 6003-6035, (2008)
  • [3] Bauer S. E., Ault A., Prather K. A., Evaluation of aerosol mixing state classes in the GISS modelEMATRIX climate model using single-particle mass spectrometry measurements, J. Geophys. Res.-Atmos, 118, pp. 9834-9844, (2013)
  • [4] Bondy A. L., Bonanno D., Moffet R. C., Wang B., Laskin A., Ault A. P., The diverse chemical mixing state of aerosol particles in the southeastern United States, Atmos. Chem. Phys, 18, pp. 12595-12612, (2018)
  • [5] Chapman E. G., Gustafson W. I., Easter R. C., Barnard J. C., Ghan S. J., Pekour M. S., Fast J. D., Coupling aerosol-cloud-radiative processes in the WRF-Chem model: Investigating the radiative impact of elevated point sources, Atmos. Chem. Phys, 9, pp. 945-964, (2009)
  • [6] Ching J., Riemer N., West M., Impacts of black carbon mixing state on black carbon nucleation scavenging: Insights from a particle-resolved model, J. Geophys. Res, 117, (2012)
  • [7] Ching J., Zaveri R. A., Easter R. C., Riemer N., Fast J. D., A three-dimensional sectional representation of aerosol mixing state for simulating optical properties and cloud condensation nuclei, J. Geophys. Res.-Atmos, 121, pp. 5912-5929, (2016)
  • [8] Ching J., Fast J., West M., Riemer N., Metrics to quantify the importance of mixing state for CCN activity, Atmos. Chem. Phys, 17, pp. 7445-7458, (2017)
  • [9] Colella P., Multidimensional upwind methods for hyperbolic conservation laws, J. Comput. Phys, 87, pp. 171-200, (1990)
  • [10] Curtis J. H., Michelotti M., Riemer N., Heath M. T., West M., Accelerated simulation of stochastic particle removal processes in particle-resolved aerosol models, J. Comput. Phys, 322, pp. 21-32, (2016)