Detection of breath cycles in pediatric lung sounds via an object detection-based transfer learning method

被引:0
|
作者
Park, Sa-Yoon [1 ,2 ]
Park, Ji Soo [3 ]
Lee, Jisoo [4 ]
Lee, Hyesu [1 ]
Kim, Yelin [5 ]
Suh, Dong In [3 ]
Kim, Kwangsoo [6 ,7 ]
机构
[1] Seoul Natl Univ Hosp, Inst Convergence Med Innovat Technol, Seoul 03080, South Korea
[2] Wonkwang Univ, Coll Korean Med, Dept Physiol, Iksan 54538, South Korea
[3] Seoul Natl Univ, Seoul Natl Univ Hosp, Dept Pediat, Seoul Natl Univ Hosp,Coll Med, 101 Daehak Ro, Seoul 03080, South Korea
[4] Seoul Natl Univ, Interdisciplinary Program Bioengn, Seoul 08826, South Korea
[5] Hongik Univ, Dept Comp Engn, Seoul, South Korea
[6] Seoul Natl Univ Hosp, Inst Convergence Med Innovat Technol, Dept Transdisciplinary Med, 101 Daehak Ro, Seoul 03080, South Korea
[7] Seoul Natl Univ, Coll Med, Dept Med, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Pediatric lung sounds; Breath cycle detection; Object detection; Transfer learning; Auscultation; SYSTEM;
D O I
10.1016/j.bspc.2025.107693
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Auscultation is critical for assessing the respiratory system in children; however, the lack of pediatric lung sound databases impedes the development of automated analysis tools. This study introduces an object detection-based transfer learning method to accurately predict breath cycles in pediatric lung sounds. We utilized a model based on the YOLOv1 architecture, initially pre-trained on an adult lung sound dataset (HF_Lung_v1) and subsequently fine-tuned on a pediatric dataset (SNUCH_Lung). The input feature was the log Mel spectrogram, which effectively captured the relevant frequency and temporal information. The pre-trained model achieved an F1 score of 0.900 +/- 0.003 on the HF_Lung_v1 dataset. After fine-tuning, it reached an F1 score of 0.824 +/- 0.009 on the SNUCH_Lung dataset, confirming the efficacy of transfer learning. This model surpassed the performance of a baseline model trained solely on the SNUCH_Lung dataset without transfer learning. We also explored the impact of segment length, width, and various audio feature extraction techniques; the optimal results were obtained with 15 s segments, a 2-second width, and the log Mel spectrogram. The model is promising for clinical applications, such as generating large-scale annotated datasets, visualizing and labeling individual breath cycles, and performing correlation analysis with physiological indicators. Future research will focus on expanding the pediatric lung sound database through auto-labeling techniques and integrating the model into stethoscopes for real-time analysis. This study highlights the potential of object detection-based transfer learning in enhancing the accuracy of breath cycle prediction in pediatric lung sounds and advancing pediatric respiratory sound analysis tools.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Deep Learning Method Based Binary Descriptor for Object Detection
    Rani, Ritu
    Kumar, Ravinder
    Singh, Amit Prakash
    PROCEEDINGS OF ICETIT 2019: EMERGING TRENDS IN INFORMATION TECHNOLOGY, 2020, 605 : 364 - 371
  • [32] QBox: Partial Transfer Learning With Active Querying for Object Detection
    Tang, Ying-Peng
    Wei, Xiu-Shen
    Zhao, Borui
    Huang, Sheng-Jun
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (06) : 3058 - 3070
  • [33] Object Detection and Tracking for Community Surveillance using Transfer Learning
    Machiraju, Gayatri Sasi Rekha
    Kumari, K. Aruna
    Sharif, Shaikh Khadar
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT 2021), 2021, : 1035 - 1042
  • [34] Transfer Learning for Object Detection in Remote Sensing Images with YOLO
    Devi, A.
    Reddy, K. Venkateswara
    Bangare, Sunil L.
    Pande, Deepti S.
    Balaji, S. R.
    Badhoutiya, Arti
    Shrivastava, Anurag
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (03) : 980 - 989
  • [35] An intrusion detection method based on active transfer learning
    Li, Jingmei
    Wu, Weifei
    Xue, Di
    INTELLIGENT DATA ANALYSIS, 2020, 24 (02) : 363 - 383
  • [36] Foreign Object Shading Detection in Photovoltaic Modules Based on Transfer Learning
    Liu, Bin
    Kong, Qingda
    Zhu, Hongyu
    Zhang, Dongdong
    Goh, Hui Hwang
    Wu, Thomas
    ENERGIES, 2023, 16 (07)
  • [37] Robust Deep Transfer Learning Based Object Detection and Tracking Approach
    Narmadha, C.
    Kavitha, T.
    Poonguzhali, R.
    Hamsadhwani, V.
    Walia, Ranjan
    Monia
    Jegajothi, B.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 35 (03): : 3613 - 3626
  • [38] Salient Object Detection via Integrity Learning
    Zhuge, Mingchen
    Fan, Deng-Ping
    Liu, Nian
    Zhang, Dingwen
    Xu, Dong
    Shao, Ling
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (03) : 3738 - 3752
  • [39] Realtime Object Detection via Deep Learning-based Pipelines
    Shanahan, James G.
    Dai, Liang
    PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), 2019, : 2977 - 2978
  • [40] Irony detection via sentiment-based transfer learning
    Zhang, Shiwei
    Zhang, Xiuzhen
    Chan, Jeffrey
    Rosso, Paolo
    INFORMATION PROCESSING & MANAGEMENT, 2019, 56 (05) : 1633 - 1644