CPconf_score: A Deep Learning Free Energy Function Trained Using Molecular Dynamics Data for Cyclic Peptides

被引:0
作者
Zeng, Qing [1 ]
Chen, Jia-Nan [1 ]
Dai, Botao [1 ]
Jiang, Fan [1 ]
Wu, Yun-Dong [1 ,2 ,3 ]
机构
[1] Peking Univ, Sch Chem Biol & Biotechnol, Key Lab Computat Chem & Drug Design, State Key Lab Chem Oncogen,Shenzhen Grad Sch, Shenzhen 518055, Peoples R China
[2] Shenzhen Bay Lab, Inst Chem Biol, Shenzhen 518132, Peoples R China
[3] Peking Univ, Coll Chem & Mol Engn, Beijing 100871, Peoples R China
关键词
PARTICLE MESH EWALD; CONFORMATIONAL-ANALYSIS; MEMBRANE-PERMEABILITY; STRUCTURE PREDICTION; DESIGN; AMBER; ISOMERIZATION; SIMULATIONS;
D O I
10.1021/acs.jctc.4c01386
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Accurate structural feature characterization of cyclic peptides (CPs), especially those with less than 10 residues and cis-peptide bonds, is challenging but important for the rational design of bioactive peptides. In this study, we performed high-temperature molecular dynamics (high-T MD) simulations on 250 CPs with random sequences and applied the point-adaptive k-nearest neighbors (PAk) method to estimate the free energies of millions of sampled conformations. Using this data set, we trained a SchNet-based deep learning model, termed CPconf_score, to predict the conformational free energies of CPs. We tested CPconf_score to identify near-native conformations from MD-sampled conformations of 50 CPs from the Cambridge Structural Database. Our method achieved accurate predictions for 41 out of 50 CPs with a backbone RMSD of less than 1.0 & Aring; compared to crystal structures. In comparison, other advanced CP structure prediction tools, such as HighFold and Rosetta, successfully predicted 12 and 19 CPs, respectively.
引用
收藏
页码:991 / 1000
页数:10
相关论文
共 64 条
  • [1] Natural Cyclic Peptides as an Attractive Modality for Therapeutics: A Mini Review
    Abdalla, Muna Ali
    McGaw, Lyndy J.
    [J]. MOLECULES, 2018, 23 (08)
  • [2] The Rosetta All-Atom Energy Function for Macromolecular Modeling and Design
    Alford, Rebecca F.
    Leaver-Fay, Andrew
    Jeliazkov, Jeliazko R.
    O'Meara, Matthew J.
    DiMaio, Frank P.
    Park, Hahnbeom
    Shapovalov, Maxim V.
    Renfrew, P. Douglas
    Mulligan, Vikram K.
    Kappel, Kalli
    Labonte, Jason W.
    Pacella, Michael S.
    Bonneau, Richard
    Bradley, Philip
    Dunbrack, Roland L., Jr.
    Das, Rhiju
    Baker, David
    Kuhlman, Brian
    Kortemme, Tanja
    Gray, Jeffrey J.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2017, 13 (06) : 3031 - 3048
  • [3] Accurate prediction of protein structures and interactions using a three-track neural network
    Baek, Minkyung
    DiMaio, Frank
    Anishchenko, Ivan
    Dauparas, Justas
    Ovchinnikov, Sergey
    Lee, Gyu Rie
    Wang, Jue
    Cong, Qian
    Kinch, Lisa N.
    Schaeffer, R. Dustin
    Millan, Claudia
    Park, Hahnbeom
    Adams, Carson
    Glassman, Caleb R.
    DeGiovanni, Andy
    Pereira, Jose H.
    Rodrigues, Andria V.
    van Dijk, Alberdina A.
    Ebrecht, Ana C.
    Opperman, Diederik J.
    Sagmeister, Theo
    Buhlheller, Christoph
    Pavkov-Keller, Tea
    Rathinaswamy, Manoj K.
    Dalwadi, Udit
    Yip, Calvin K.
    Burke, John E.
    Garcia, K. Christopher
    Grishin, Nick V.
    Adams, Paul D.
    Read, Randy J.
    Baker, David
    [J]. SCIENCE, 2021, 373 (6557) : 871 - +
  • [4] MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH
    BERENDSEN, HJC
    POSTMA, JPM
    VANGUNSTEREN, WF
    DINOLA, A
    HAAK, JR
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) : 3684 - 3690
  • [5] CONFORMATION OF CYCLO-BIS(L-VALYL-L-PROLYL-D-ALANYL-), A SYNTHETIC CYCLIC HEXAPEPTIDE
    BHANDARY, KK
    KOPPLE, KD
    [J]. ACTA CRYSTALLOGRAPHICA SECTION C-CRYSTAL STRUCTURE COMMUNICATIONS, 1991, 47 : 1280 - 1283
  • [6] Accurate de novo design of hyperstable constrained peptides
    Bhardwaj, Gaurav
    Mulligan, Vikram Khipple
    Bahl, Christopher D.
    Gilmore, Jason M.
    Harvey, Peta J.
    Cheneval, Olivier
    Buchko, Garry W.
    Pulavarti, Surya V. S. R. K.
    Kaas, Quentin
    Eletsky, Alexander
    Huang, Po-Ssu
    Johnsen, William A.
    Greisen, Per Jr
    Rocklin, Gabriel J.
    Song, Yifan
    Linsky, Thomas W.
    Watkins, Andrew
    Rettie, Stephen A.
    Xu, Xianzhong
    Carter, Lauren P.
    Bonneau, Richard
    Olson, James M.
    Coutsias, Evangelos
    Correnti, Colin E.
    Szyperski, Thomas
    Craik, David J.
    Baker, David
    [J]. NATURE, 2016, 538 (7625) : 329 - +
  • [7] Structural biology and bioinformatics in drug design: opportunities and challenges for target identification and lead discovery
    Blundell, TL
    Sibanda, BL
    Montalvao, RW
    Brewerton, S
    Chelliah, V
    Worth, CL
    Harmer, NJ
    Davies, O
    Burke, D
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2006, 361 (1467) : 413 - 423
  • [8] Toward high-resolution de novo structure prediction for small proteins
    Bradley, P
    Misura, KMS
    Baker, D
    [J]. SCIENCE, 2005, 309 (5742) : 1868 - 1871
  • [9] The Amber biomolecular simulation programs
    Case, DA
    Cheatham, TE
    Darden, T
    Gohlke, H
    Luo, R
    Merz, KM
    Onufriev, A
    Simmerling, C
    Wang, B
    Woods, RJ
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2005, 26 (16) : 1668 - 1688
  • [10] Probability Density Reweighting of High-Temperature Molecular Dynamics
    Chen, Jia-Nan
    Dai, Botao
    Wu, Yun-Dong
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 20 (12) : 4977 - 4985