Efficient Replay Deep Meta-Reinforcement Learning for Active Fault-Tolerant Control of Solid Oxide Fuel Cell Systems Considering Multivariable Coordination

被引:1
作者
Li, Jiawen [1 ,2 ]
Zhou, Tao [1 ]
机构
[1] Shanghai Univ Elect Power, Sch Elect & Informat Engn, Shanghai 201306, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Dept Elect Engn, Shanghai 200240, Peoples R China
来源
IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION | 2025年 / 11卷 / 01期
基金
中国国家自然科学基金;
关键词
Fault tolerant systems; Fault tolerance; Hydrogen; Voltage control; Fuels; Fuel cells; Temperature control; Prediction algorithms; Heuristic algorithms; Genetic algorithms; Active fault-tolerant integrated control; constraint violations; deep meta-reinforcement learning (DMRL); fuel utilization; solid oxide fuel cell (SOFC); MANAGEMENT;
D O I
10.1109/TTE.2024.3470240
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A data-driven integrated active fault-tolerant control (IAFT) strategy for controlling the solid oxide fuel cell (SOFC) output voltage is proposed, which maintains satisfactory dynamic performance and eliminates constraint violations in the event of system failure. In addition, this article introduces an efficient replay deep meta-deterministic policy gradient (ER-DMDPG) for IAFTs, which combines priority experience replay and meta-learning techniques to improve the robustness and multitask cooperative learning capability of the IAFTs. The algorithm combines the controllers of the fuel reformer and direct current-direct current (dc-dc) converter into a single independent agent, which is trained by a cooperative meta-learner and a base learner to achieve multiobjective optimal active fault-tolerant control (FTC). It is experimentally demonstrated that the proposed method can maintain better dynamic performance and prevent constraint violations of fuel utilization across a wide range of working conditions.
引用
收藏
页码:4803 / 4817
页数:15
相关论文
共 21 条
  • [11] Improving the performance of proton exchange membrane and solid oxide fuel cells under voltage flicker using Fuzzy-PI controller
    Marzooghi, H.
    Raoofat, M.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (09) : 7796 - 7806
  • [12] Review on Control of DC Microgrids and Multiple Microgrid Clusters
    Meng, Lexuan
    Shafiee, Qobad
    Trecate, Giancarlo Ferrari
    Karimi, Houshang
    Fulwani, Deepak
    Lu, Xiaonan
    Guerrero, Josep M.
    [J]. IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, 2017, 5 (03) : 928 - 948
  • [13] Generalized Spatial-Temporal Fault Location Method for Solid Oxide Fuel Cells Using LSTM and Causal Inference
    Peng, Jingxuan
    Huang, Jian
    Jiang, Chang
    Xu, Yuan-Wu
    Wu, Xiao-Long
    Li, Xi
    [J]. IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2022, 8 (04) : 4583 - 4594
  • [14] Sun YL, 2010, P AMER CONTR CONF, P448
  • [15] Neural RRT*: Learning-Based Optimal Path Planning
    Wang, Jiankun
    Chi, Wenzheng
    Li, Chenming
    Wang, Chaoqun
    Meng, Max Q. -H.
    [J]. IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2020, 17 (04) : 1748 - 1758
  • [16] Predictive control of SOFC based on a GA-RBF neural network model
    Wu, Xiao-Juan
    Zhu, Xin-Jian
    Cao, Guang-Yi
    Tu, Heng-Yong
    [J]. JOURNAL OF POWER SOURCES, 2008, 179 (01) : 232 - 239
  • [17] Optimal fault-tolerant control strategy of a solid oxide fuel cell system
    Wu, Xiaojuan
    Gao, Danhui
    [J]. JOURNAL OF POWER SOURCES, 2017, 364 : 163 - 181
  • [18] Fault tolerance control of SOFC systems based on nonlinear model predictive control
    Wu, Xiaojuan
    Gao, Danhui
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (04) : 2288 - 2308
  • [19] Xu DZ, 2016, CHIN CONT DECIS CONF, P3986, DOI 10.1109/CCDC.2016.7531681
  • [20] Fuzzy Fault Diagnosis and Accommodation System for Hybrid Fuel-Cell/Gas-Turbine Power Plant
    Yang, Wenli
    Lee, Kwang Y.
    Junker, S. Tobias
    Ghezel-Ayagh, Hossein
    [J]. IEEE TRANSACTIONS ON ENERGY CONVERSION, 2010, 25 (04) : 1187 - 1194