Progress and Prospects of Inorganic Solid-State Electrolyte-Based All-Solid-State Li-S Batteries

被引:0
|
作者
Liu, Tong [1 ]
Liu, Ronghui [2 ]
Lu, Chengxing [3 ]
Song, Wenjia [1 ,4 ]
机构
[1] Tianmushan Lab, Hangzhou 311115, Peoples R China
[2] Beihang Univ, Sch Chem, Key Lab Bioinspired Smart Interfacial Sci & Techno, Beijing 100191, Peoples R China
[3] Tianjin Normal Univ, Coll Phys & Mat Sci, Tianjin Int Joint Res Ctr Surface Technol Energy S, Tianjin 300387, Peoples R China
[4] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
all-solid-state lithium-sulfur batteries; ex/in situ characterization; interface issues; solid-state electrolytes; sulfur cathode; LITHIUM-SULFUR BATTERIES; IONIC CONDUCTOR; INTERFACIAL RESISTANCE; PRACTICAL APPLICATION; CRYSTAL-STRUCTURE; ENERGY DENSITY; PHASE; COMPOSITE; CATHODE; CARBON;
D O I
10.1002/adsu.202400555
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
All-solid-state lithium-sulfur batteries (ASSLSBs), a promising alternative to liquid lithium-sulfur batteries, are expected to alleviate the shuttle effect, reduce material loss, and achieve a compact structure. However, ASSLSBs face challenges in ionic conductivity and stability of solid electrolytes, optimization of sulfur cathodes, and electrolyte/electrode interfaces. This review summarizes recent research progress and strategies addressing these issues, focusing on oxide and sulfide-based electrolytes. Furthermore, it emphasizes the crucial role of rational optimization of sulfur cathode materials in composition, structure, and microstructure for constructing efficient ion/electron transport networks, and explores methods to solve chemical/electrochemical and physical interface issues. Additionally, it addresses challenges associated with the lithium anode and its interface problems, covering strategies, such as lithium alloy formation, 3D electrode architecture, and interfacial buffer layer implementation. These approaches aim to enhance the stability and performance of the lithium anode in ASSLSBs. Finally, this review highlights the significance of in situ characterization techniques for revealing reaction mechanisms, providing insights into phase composition, elemental chemical states, and dynamic structural transformations within the batteries, crucial for developing high-performance ASSLSBs.
引用
收藏
页数:31
相关论文
共 50 条
  • [21] Research progress of inorganic solid electrolyte materials for all-solid-state sodium-ion batteries
    Li, Xiao-Shan
    Liang, Jin
    Cao, Xin
    Zhu, Si-Ying
    Bai, Yun-Fang
    Sun, Jia-Wen
    Luo, He-Bin
    Kong, Jie
    RARE METALS, 2025,
  • [22] A Multilayer Ceramic Electrolyte for All-Solid-State Li Batteries
    Zhu, Jianxun
    Li, XiaoLei
    Wu, Changwei
    Gao, Jian
    Xu, Henghui
    Li, Yutao
    Guo, Xiangxin
    Li, Hong
    Zhou, Weidong
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (07) : 3781 - 3790
  • [23] Recent developments in materials design for all-solid-state Li-S batteries
    Phuc, Nguyen Huu Huy
    Hikima, Kazuhiro
    Muto, Hiroyuki
    Matsuda, Atsunori
    CRITICAL REVIEWS IN SOLID STATE AND MATERIALS SCIENCES, 2022, 47 (03) : 283 - 308
  • [24] Thermal, Electrical, and Environmental Safeties of Sulfide Electrolyte-Based All-Solid-State Li-Ion Batteries
    Liu, Tongjie
    Kum, Lenin W.
    Singh, Deependra Kumar
    Kumar, Jitendra
    ACS OMEGA, 2023, 8 (13): : 12411 - 12417
  • [25] Engineering the interface of organic/inorganic composite solid-state electrolyte by amino effect for all-solid-state lithium batteries
    Sun, Yan-Yun
    Zhang, Qi
    Fan, Lei
    Han, Dian-Dian
    Li, Li
    Yan, Lei
    Hou, Pei -Yu
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 628 (877-885) : 877 - 885
  • [26] Stability of the Argyrodite Electrolyte in Li-In Based All-Solid-State Batteries
    Huang, Di
    Liu, Gao
    Tong, Wei
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (22): : 10376 - 10385
  • [27] Glassy solid-state electrolytes for all-solid-state batteries
    Wheaton, Jacob
    Olson, Madison
    Torres, Victor M., III
    Martin, Steve W.
    AMERICAN CERAMIC SOCIETY BULLETIN, 2023, 102 (01): : 24 - 31
  • [28] Microstructural analyses of all-solid-state Li-S batteries using LiBH4-based solid electrolyte for prolonged cycle performance
    Kisu, Kazuaki
    Kim, Sangryun
    Yoshida, Ryuga
    Oguchi, Hiroyuki
    Toyama, Naoki
    Orimo, Shin-ichi
    JOURNAL OF ENERGY CHEMISTRY, 2020, 50 : 424 - 429
  • [29] Solid-State Electrolyte Anchored with a Carboxylated Azo Compound for All-Solid-State Lithium Batteries
    Luo, Chao
    Ji, Xiao
    Chen, Ji
    Gaskell, Karen J.
    He, Xinzi
    Liang, Yujia
    Jiang, Jianjun
    Wang, Chunsheng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (28) : 8567 - 8571
  • [30] Reaction Mechanism Optimization of Solid-State Li-S Batteries with a PEO-Based Electrolyte
    Fang, Ruyi
    Xu, Henghui
    Xu, Biyi
    Li, Xinyu
    Li, Yutao
    Goodenough, John B.
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (02)