Dynamic Coordination Engineering of Z-Scheme (FFV)2PdCl2/C3N4 Heterojunction for Superior Photocatalytic Hydrogen Evolution

被引:0
作者
Xu, Jiapeng [1 ]
Liu, Dong [1 ]
Li, Xinming [1 ]
Zhang, Xiaohu [2 ]
Zhang, Jing [1 ]
Zhang, Yuexing [3 ]
Peng, Tianyou [1 ]
机构
[1] Wuhan Univ, Coll Chem & Mol Sci, Engn Res Ctr Organosilicon Cpds & Mat, Wuhan 430072, Peoples R China
[2] Huazhong Agr Univ, Coll Chem, Wuhan 430070, Peoples R China
[3] Dezhou Univ, Coll Chem & Chem Engn, Dezhou 253023, Peoples R China
来源
ADVANCED SUSTAINABLE SYSTEMS | 2025年 / 9卷 / 01期
基金
中国国家自然科学基金;
关键词
dynamic coordination; Fluoflavin-Pd complex; g-C3N4; nanosheet; photocatalytic H-2 evolution reaction; Z-scheme heterojunction; GRAPHITIC CARBON NITRIDE; SINGLE-ATOM; NANOSHEETS; SYSTEMS;
D O I
10.1002/adsu.202400638
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Realizing highly efficient photocatalytic hydrogen evolution reaction (HER) is a key challenge. Herein, a (FFV)(2)PdCl2 complex is developed with dynamic coordination engineering between the Pd-II site and Fluoflavin (FFV) ligands, and couple it with graphite carbon nitride (g-C3N4) ultrathin nanosheets to construct a novel Z-scheme heterojunction ((FFV)(2)PdCl2/C3N4). The resultant heterojunction delivers a HER activity of 648 mu mol h(-1) under visible light (lambda >= 400 nm) illumination and an apparent quantum yield up to 40.1% at 400 nm, far superior to those g-C3N4-based catalysts reported previously. Mechanistic and theoretical studies reveal that the dynamic coordination between the Pd-II site and FFV ligands not only significantly accelerates the electron transfer from g-C3N4 to (FFV)(2)PdCl2 and then to the Pd-II sites via a Z-scheme mechanism, but also effectively maintain the efficacy and stability of the Pd-II active sties, and thus the (FFV)(2)PdCl2/C3N4 with a ultralow Pd-loading amount (ca. 0.1 wt.%) exhibits the impressive activity and durability. The present dynamic coordination and structural evolution of (FFV)(2)PdCl2 are also applicable for significantly improving the HER performance of other semiconductors, thus paving a potential way for manufacturing highly efficient and active H-2 production systems.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Improved photocatalytic activity of WO3/C3N4: By constructing an anchoring morphology with a Z-scheme band structure
    Yao, Jiacheng
    Zhang, Min
    Yin, Hongfei
    Luo, Yuting
    Liu, Xiaoheng
    SOLID STATE SCIENCES, 2019, 95
  • [42] Engineering of direct Z-scheme ZnIn2S4/NiWO4 heterojunction with boosted photocatalytic hydrogen production
    Lv, Hua
    Wu, Hao
    Zheng, JinZe
    Kong, Yuanfang
    Xing, Xinyan
    Wang, Gongke
    Liu, Yumin
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 666
  • [43] Solar driven photocatalytic disinfection by Z-scheme heterojunction of In2O3/g-C3N4: Performance, mechanism and application
    Chen, Xiongjian
    Jin, Yanchao
    Huang, Peiwen
    Zheng, Zhanwang
    Li, Li-Ping
    Lin, Chun-Yan
    Chen, Xiao
    Ding, Rui
    Liu, Jianxi
    Chen, Riyao
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2024, 340
  • [44] Fabrication of α-Fe2O3 Nanoparticles/g-C3N4 Direct Z-Scheme Heterojunction of Durable Photocatalytic Activity
    Galan-Gonzalez, Alejandro
    Fernandez, Isaias
    Zaluzec, Nestor J.
    Cambre, Sofie
    Arenal, Raul
    Benito, Ana M.
    Maser, Wolfgang K.
    ACS APPLIED NANO MATERIALS, 2025,
  • [45] 1T phase boosted MoSe2/pg-C3N4 with Z-scheme heterojunction for enhanced photocatalytic degradation of contaminants
    Wang, Yi
    Xiao, Xinyan
    Chen, Jiayi
    Lu, Mingli
    Zeng, Xingye
    APPLIED SURFACE SCIENCE, 2020, 510
  • [46] Enhanced photocatalytic performance of Z-scheme TiO2/g-C3N4 heterojunction towards degradation of Rhodamine B
    Yang, Y.
    Wang, D. Y.
    Zhang, Y. C.
    Chen, S. Y.
    Sun, Y.
    DIGEST JOURNAL OF NANOMATERIALS AND BIOSTRUCTURES, 2022, 17 (04) : 1491 - 1500
  • [47] Construction of Z-scheme heterojunction CoS/CdS@g-C3N4 hollow sphere with spatical charge separation for enhanced photocatalytic hydrogen production
    Zhang, Chengjia
    Liang, Qian
    Wang, Yanan
    Zhou, Man
    Li, Xiazhang
    Xu, Song
    Li, Zhongyu
    APPLIED SURFACE SCIENCE, 2023, 626
  • [48] Attapulgite-intercalated g-C3N4/ZnIn2S4 3D hierarchical Z-scheme heterojunction for boosting photocatalytic hydrogen production
    Wang, Bichen
    Huang, Liangliang
    Peng, Tao
    Wang, Rui
    Jin, Jun
    Wang, Huanwen
    He, Beibei
    Gong, Yansheng
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 675 : 52 - 63
  • [49] Interfacial engineering to boost photocatalytic hydrogen evolution via synergistic Z-scheme heterojunction in novel n-type metal free NiCoV-LDH/ g-C3N4 composite
    Usman, Muhammad
    Sirisuk, Akawat
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2025, 192
  • [50] A Z-scheme heterojunction of ZnO/CDots/C3N4 for strengthened photoresponsive bacteria-killing and acceleration of wound healing
    Xiang, Yiming
    Zhou, Qilin
    Li, Zhaoyang
    Cui, Zhenduo
    Liu, Xiangmei
    Liang, Yanqin
    Zhu, Shengli
    Zheng, Yufeng
    Yeung, Kelvin Wai Kwok
    Wu, Shuilin
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2020, 57 : 1 - 11