Optimizing CuNi catalysts for long-term vapor phase hydrogenation of levulinic acid to γ-valerolactone: Influence of the support on activity and stability

被引:0
作者
Quiroga, Eliana [1 ,4 ]
Cifuentes, Bernay [2 ]
Yara, Santiago [1 ]
Molto, Julia [3 ,4 ]
Cobo, Martha [1 ]
机构
[1] Univ La Sabana, Dept Chem Engn, Mat & Environm Lab, Campus Univ Puente Comun,Km 7 Autopista Norte, Bogota, Colombia
[2] Univ La Salle, Fac Engn, Chem Engn, Carrera 2 10-70, Bogota, Colombia
[3] Univ Alicante, Dept Chem Engn, POB 99, E-03080 Alicante, Spain
[4] Univ Alicante, Univ Inst Engn Chem Proc, POB 99, E-03080 Alicante, Spain
关键词
Biomass-derived products; Catalytic valorization; Continuous hydrogenation; Fuel additives; SELECTIVE HYDROGENATION; BIOMASS;
D O I
10.1016/j.apcata.2025.120140
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The conversion of biomass-derived levulinic acid (LA) to gamma-valerolactone (GVL) is crucial for sustainable chemical and fuel production. This study evaluates the vapor phase hydrogenation of LA using Cu-Ni bimetallic catalysts supported on various metal oxides and their impact on the pathways of LA conversion. Specifically, we examine the influence of AlO2, SiO2, ZrO2-SiO2, and CeO2-SiO2 on catalyst performance and stability. Cu-Ni catalysts supported on SiO2 modified with citric acid (SiO2-CA) exhibited superior stability, while the one supported on Al2O3 showed higher activity. The enhanced performance of the SiO2-CA-supported catalyst is attributed to its moderate acidity (379.3 mu mol/gcat) and resistance to sintering. Stability tests reveal that although both CuNi/ Al2O3 and CuNi/SiO2-CA catalysts deactivate over time, the latter demonstrates slower deactivation and better reactivation potential, maintaining conversion close to 80 % for 42 h. The study highlights the role of support in optimizing catalytic performance for LA hydrogenation.
引用
收藏
页数:12
相关论文
共 72 条
[1]   Hydrogenation of biomass-derived levulinic acid to γ-valerolactone over copper catalysts supported on ZrO2 [J].
Balla, Putrakumar ;
Perupogu, Vijayanand ;
Vanama, Pavan Kumar ;
Komandur, V. R. Chary .
JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2016, 91 (03) :769-776
[2]   Biorenewable chemicals: Feedstocks, technologies and the conflict with food production [J].
Bardhan, Soubhik K. ;
Gupta, Shelaka ;
Gorman, M. E. ;
Haider, M. Ali .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 51 :506-520
[3]   Catalytic Valorisation of Biomass-Derived Levulinic Acid to Biofuel Additive γ-Valerolactone: Influence of Copper Loading on Silica Support [J].
Boddula, Rajender ;
Shanmugam, Paramasivam ;
Srivatsava, Rajesh K. ;
Tabassum, Nabila ;
Pothu, Ramyakrishna ;
Naik, Ramachandra ;
Saran, Aditya ;
Viswanadham, Balaga ;
Radwan, Ahmed Bahgat ;
Al-Qahtani, Noora .
REACTIONS, 2023, 4 (03) :465-477
[4]   Gas Phase Hydrogenation of Levulinic Acid to γ-Valerolactone [J].
Bonrath, Werner ;
Castelijns, Anna Maria Cornelia Francisca ;
de Vries, Johannes Gerardus ;
Guit, Rudolf Philippus Maria ;
Schuetz, Jan ;
Sereinig, Natascha ;
Vaessen, Henricus Wilhelmus Leonardus Marie .
CATALYSIS LETTERS, 2016, 146 (01) :28-34
[5]   Enhanced Catalytic Transfer Hydrogenation of Ethyl Levulinate to γ-Valerolactone over a Robust Cu-Ni Bimetallic Catalyst [J].
Cai, Bo ;
Zhou, Xin-Cheng ;
Miao, Ying-Chun ;
Luo, Jin-Yue ;
Pan, Hui ;
Huang, Yao-Bing .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (02) :1322-1331
[6]   Structure and activity of flame made ceria supported Rh and Pt water gas shift catalysts [J].
Cavusoglu, Guelperi ;
Miao, Dengyun ;
Lichtenberg, Henning ;
Carvalho, Hudson W. P. ;
Xu, Hengyong ;
Goldbach, Andreas ;
Grunwaldt, Jan-Dierk .
APPLIED CATALYSIS A-GENERAL, 2015, 504 :381-390
[7]   Integrated Catalytic Process to Directly Convert Furfural to Levulinate Ester with High Selectivity [J].
Chen, Bingfeng ;
Li, Fengbo ;
Huang, Zhijun ;
Lu, Tao ;
Yuan, Yin ;
Yuan, Guoqing .
CHEMSUSCHEM, 2014, 7 (01) :202-209
[8]   Liquid-phase catalytic transfer hydrogenation and cyclization of levulinic acid and its esters to γ-valerolactone over metal oxide catalysts [J].
Chia, Mei ;
Dumesic, James A. .
CHEMICAL COMMUNICATIONS, 2011, 47 (44) :12233-12235
[9]   Mechanistic investigation of Ni and NiCu for catalytic transfer hydrogenation of methyl levulinate to γ-valerolactone: A combined experimental and DFT study [J].
Chitpakdee, Chirawat ;
Boonyoung, Pawan ;
Pansakdanon, Chaianun ;
Suttisintong, Khomson ;
Faungnawakij, Kajornsak ;
Khemthong, Pongtanawat ;
Youngjan, Saran ;
Kraithong, Wasawat ;
Sattayaporn, Suchinda ;
Tanthanuch, Waraporn ;
Kidkhunthod, Pinit ;
Tanwongwan, Worapak ;
Wittayakun, Jatuporn ;
Kunaseth, Manaschai ;
Kuboon, Sanchai .
APPLIED CATALYSIS A-GENERAL, 2023, 660
[10]   Hydrogen production by steam reforming of ethanol on a RhPt/CeO2/SiO2 catalyst: Synergistic effect of the Si:Ce ratio on the catalyst performance [J].
Cifuentes, Bernay ;
Hernandez, Maria ;
Monsalve, Sonia ;
Cobo, Martha .
APPLIED CATALYSIS A-GENERAL, 2016, 523 :283-293