Emotion Estimation Using Noncontact Environmental Sensing with Machine and Deep Learning Models

被引:0
|
作者
Isogami, Tsumugi [1 ]
Komuro, Nobuyoshi [2 ]
机构
[1] Chiba Univ, Grad Sch Sci & Engn, Chiba 2638522, Japan
[2] Chiba Univ, Digital Transformat Enhancement Council, Chiba 2638522, Japan
来源
APPLIED SCIENCES-BASEL | 2025年 / 15卷 / 02期
关键词
emotion estimation; non-contact environmental sensing; machine learning; deep learning; wireless sensor networks (WSN); RECOGNITION; NOISE;
D O I
10.3390/app15020721
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper presents a method for estimating arousal and emotional valence levels using non-contact environmental sensing, addressing challenges such as discomfort from long-term device wear and privacy concerns associated with facial image analysis. We employed environmental data to develop machine learning models, including Random Forest, Gradient Boosting Decision Trees, and the deep learning model CNN-LSTM, and evaluated their accuracy in estimating emotional states. The results indicate that decision tree-based methods, particularly Random Forest, are highly effective for estimating emotional states from environmental data.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Emotion Detection from EEG Signals Using Machine Deep Learning Models
    Fernandes, Joao Vitor Marques Rabelo
    de Alexandria, Auzuir Ripardo
    Marques, Joao Alexandre Lobo
    de Assis, Debora Ferreira
    Motta, Pedro Crosara
    Silva, Bruno Riccelli dos Santos
    BIOENGINEERING-BASEL, 2024, 11 (08):
  • [2] Analysis of existing techniques in human emotion and behavioral analysis using deep learning and machine learning models
    Jinnuo, Zhu
    Goyal, S. B.
    Rajawat, Anand Singh
    Waked, Hayyan Nassar
    Ahmad, Sultan
    Randhawa, Princy
    Suresh, Shilpa
    Naik, Nithesh
    ENGINEERING RESEARCH EXPRESS, 2025, 7 (01):
  • [3] Emotion Estimation Using EEG with Deep learning Networks
    Vynatheya, Marrapu
    Subha, D. P.
    2022 IEEE 19TH INDIA COUNCIL INTERNATIONAL CONFERENCE, INDICON, 2022,
  • [4] Evaluation of Rainfall Erosivity Factor Estimation Using Machine and Deep Learning Models
    Lee, Jimin
    Lee, Seoro
    Hong, Jiyeong
    Lee, Dongjun
    Bae, Joo Hyun
    Yang, Jae E.
    Kim, Jonggun
    Lim, Kyoung Jae
    WATER, 2021, 13 (03)
  • [5] STRATIFIED MACHINE LEARNING MODELS FOR WHEAT YIELD ESTIMATION USING REMOTE SENSING DATA
    Khechba, Keltoum
    Belgiu, Mariana
    Laamrani, Ahmed
    Dong, Qi
    Stein, Alfred
    Chehbouni, Abdelghani
    IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024, 2024, : 1946 - 1949
  • [6] EEG-Based Emotion Estimation with Different Deep Learning Models
    Alakus, Talha Burak
    Turkoglu, Ibrahim
    2019 4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2019, : 33 - 37
  • [7] Emotion estimation of people wearing masks using machine learning
    Hmidi, Naziha
    Afdhal, Rim
    Hamdi, Monia
    Ejbali, Ridha
    Zaied, Mourad
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2024, 19 (01)
  • [8] Noncontact Soil Moisture Estimation Using Continuous Wave Radar and Deep Learning
    Pramanik, Sourav Kumar
    Hossain, Md. Shafkat
    Islam, Shekh M. M.
    IEEE SENSORS JOURNAL, 2024, 24 (17) : 28419 - 28426
  • [9] Sentiment and emotion analysis using pretrained deep learning models
    Davidson Kwamivi Aidam
    Ben-Bright Benuwa
    Stephen Opoku Oppong
    Edward Nwiah
    Journal of Data, Information and Management, 2024, 6 (3): : 277 - 295
  • [10] Quantitative Estimation of Rainfall from Remote Sensing Data Using Machine Learning Regression Models
    Mohia, Yacine
    Absi, Rafik
    Lazri, Mourad
    Labadi, Karim
    Ouallouche, Fethi
    Ameur, Soltane
    HYDROLOGY, 2023, 10 (02)