Orbweaver: Succinct Linear Functional Commitments from Lattices

被引:8
作者
Fisch, Ben [1 ]
Liu, Zeyu [1 ]
Vesely, Psi [1 ]
机构
[1] Yale Univ, New Haven, CT 06520 USA
来源
ADVANCES IN CRYPTOLOGY - CRYPTO 2023, PT II | 2023年 / 14082卷
关键词
ARGUMENTS;
D O I
10.1007/978-3-031-38545-2_4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present Orbweaver, the first plausibly post-quantum functional commitment to achieve quasilinear prover time together with O(log n) proof size and O(log n log log n) verifier time. Orbweaver enables evaluation of linear maps on committed vectors over cyclotomic rings or the integers. It is extractable, preprocessing, non-interactive, structure-preserving, amenable to recursive composition, and supports logarithmic public proof aggregation. The security of our scheme is based on the kR-ISIS assumption (and its knowledge counterpart), whereby we require a trusted setup to generate a universal structured reference string. We additionally use Orbweaver to construct a succinct polynomial commitment for integer polynomials.
引用
收藏
页码:106 / 131
页数:26
相关论文
共 54 条
  • [1] Ajtai M., 1996, Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, P99, DOI 10.1145/237814.237838
  • [2] Lattice-Based SNARKs: Publicly Verifiable, Preprocessing, and Recursively Composable (Extended Abstract)
    Albrecht, Martin R.
    Cini, Valerio
    Lai, Russell W. F.
    Malavolta, Giulio
    Thyagarajan, Sri AravindaKrishnan
    [J]. ADVANCES IN CRYPTOLOGY - CRYPTO 2022, PT II, 2022, 13508 : 102 - 132
  • [3] Subtractive Sets over Cyclotomic Rings Limits of Schnorr-Like Arguments over Lattices
    Albrecht, Martin R.
    Lai, Russell W. F.
    [J]. ADVANCES IN CRYPTOLOGY - CRYPTO 2021, PT II, 2021, 12826 : 519 - 548
  • [4] Ligero: Lightweight Sublinear Arguments Without a Trusted Setup
    Ames, Scott
    Hazay, Carmit
    Ishai, Yuval
    Venkitasubramaniam, Muthuramakrishnan
    [J]. CCS'17: PROCEEDINGS OF THE 2017 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2017, : 2087 - 2104
  • [5] Attema Thomas, 2020, Advances in Cryptology - CRYPTO 2020. 40th Annual International Cryptology Conference, CRYPTO 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12172), P513, DOI 10.1007/978-3-030-56877-1_18
  • [6] A Compressed Σ-Protocol Theory for Lattices
    Attema, Thomas
    Cramer, Ronald
    Kohl, Lisa
    [J]. ADVANCES IN CRYPTOLOGY - CRYPTO 2021, PT II, 2021, 12826 : 549 - 579
  • [7] Balbas D., 2022, Report 2022/1365
  • [8] Baum C., 2019, 38 ANN INT CRYPT C C, P669
  • [9] Becker A., 2016, P 27 ANN ACM SIAM S, P10, DOI [10.1137/1.9781611974331.ch2, DOI 10.1137/1.9781611974331.CH2]
  • [10] Ben-Sasson E., 2018, 45 INT C AUT LANG PR