A recent review on advancements in dimensional accuracy in fused deposition modeling (FDM) 3D printing

被引:2
|
作者
Equbal, Azhar [1 ]
Murmu, Ramesh [2 ]
Kumar, Veenit [3 ]
Equbal, Md. Asif [4 ]
机构
[1] Jamia Millia Islamia, Dept Mech Engn, New Delhi 110025, India
[2] Jharkhand Univ Technol, Dept Mech Engn, Ranchi 834010, Jharkhand, India
[3] Cambridge Inst Technol, Dept Mech Engn, Ranchi 835103, Jharkhand, India
[4] Gaya Coll Engn, Dept Mech Engn, Gaya 823003, Bihar, India
关键词
additive manufacturing; fused deposition modeling; layer adhesion; quality; accuracy; PROCESS-PARAMETER OPTIMIZATION; MECHANICAL-PROPERTIES; PARTS; QUALITY; IMPROVEMENT; ROUGHNESS; DESIGN; SPEED; PLA;
D O I
10.3934/matersci.2024046
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fused deposition modeling (FDM) fabricated components have gained significant attention and widespread adoption across modern industries due to their versatility, serving as both prototypes and final products. FDM offers rapid and cost-effective prototyping and production capabilities; however, utilizing directly manufactured FDM parts is not practical. Secondary operations like post-processing, testing, and validation are typically required to ensure that the fabricated parts meet the necessary standards for their intended applications. Desired repeatability, reproducibility, reliability, and preciseness should be the main prerequisites of the part fabricated. It is desirable that additive manufacturing (AM) products should be produced with advanced control processes which should possess acceptable quality characteristics. Ensuring the dimensional accuracy of FDM parts is very crucial, and hence it is important to emphasize the key factors that influence the dimensional precision during their fabrication. Sharing insights into these critical factors is essential to steer scholars, researchers, and the AM industry towards informed decisions and future advancements in AM. We aimed to outline the significant factors influencing the dimensional accuracy of the FDM part. These research papers are collected from Scopus and web of science data using "FDM" and "dimensional accuracy" as the keywords. We include the latest papers published especially during 2020 to 2024, which were lacking in earlier research.
引用
收藏
页码:950 / 990
页数:41
相关论文
共 50 条
  • [21] 3D printing of biodegradable biocomposites based on forest industrial residues by fused deposition modeling
    Helaoui, Sarra
    Koubaa, Ahmed
    Nouri, Hedi
    Beauregard, Martin
    Guessasma, Sofiane
    INDUSTRIAL CROPS AND PRODUCTS, 2024, 222
  • [22] Quality considerations on the pharmaceutical applications of fused deposition modeling 3D printing
    Melocchi, Alice
    Briatico-Vangosa, Francesco
    Uboldi, Marco
    Parietti, Federico
    Turchi, Maximilian
    von Zeppelin, Didier
    Maroni, Alessandra
    Zema, Lucia
    Gazzaniga, Andrea
    Zidan, Ahmed
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2021, 592
  • [23] Fused deposition modeling (FDM) based 3D printing of microelectrodes and multi-electrode probes
    Helu, Mariela Alicia Brites
    Liu, Liang
    ELECTROCHIMICA ACTA, 2021, 365
  • [24] The effect of process parameters on geometric deviations in 3D printing with fused deposition modelling
    Cappellini, Cristian
    Borgianni, Yuri
    Maccioni, Lorenzo
    Nezzi, Chiara
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 122 (3-4) : 1763 - 1803
  • [25] 3D and 4D printing: A review of virgin polymers used in fused deposition modeling
    Makki, Tarig
    Vattathurvalappil, Suhail Hyder
    Theravalappil, Rajesh
    Nazir, Aamer
    Alhajeri, Ali
    Azeem, Mohammed Abdul
    Mahdi, Elsadig
    Ummer, Aniz Chennampilly
    Ali, Usman
    COMPOSITES PART C: OPEN ACCESS, 2024, 14
  • [26] THERMOPLASTICS 3D PRINTING USING FUSED DEPOSITION MODELING ON FABRICS
    Blais, Maxwell
    Tomlinson, Scott
    Khoda, Bashir
    PROCEEDINGS OF ASME 2021 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION (IMECE2021), VOL 3, 2021,
  • [27] Numerical Modeling and Analysis of Transient and Three-Dimensional Heat Transfer in 3D Printing via Fused-Deposition Modeling (FDM)
    Apacoglu-Turan, Bueryan
    Kirkkopru, Kadir
    Cakan, Murat
    COMPUTATION, 2024, 12 (02)
  • [28] Learning-based error modeling in FDM 3D printing process
    Charalampous, Paschalis
    Kostavelis, Ioannis
    Kontodina, Theodora
    Tzovaras, Dimitrios
    RAPID PROTOTYPING JOURNAL, 2021, 27 (03) : 507 - 517
  • [29] 3D Printing of Fiber-Reinforced Plastic Composites Using Fused Deposition Modeling: A Status Review
    Pervaiz, Salman
    Qureshi, Taimur Ali
    Kashwani, Ghanim
    Kannan, Sathish
    MATERIALS, 2021, 14 (16)
  • [30] Surface Modification of 3D Printed PLA Objects by Fused Deposition Modeling: A Review
    Baran, Eda Hazal
    Erbil, H. Yildirim
    COLLOIDS AND INTERFACES, 2019, 3 (02):