Reaction-Diffusion Equations with Large Diffusion and Convection Heating at the Boundary

被引:0
|
作者
Pires, Leonardo [1 ]
机构
[1] Univ Estadual Ponta Grossa, Ponta Grossa, PR, Brazil
关键词
Reaction-diffusion equations; Large diffusion; Convection heating at the boundary; Structural stability; SPATIAL HOMOGENIZATION; PARABOLIC PROBLEMS; ATTRACTORS; MORSE; CONTINUITY;
D O I
10.1007/s12591-024-00705-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers a model of a reaction-diffusion equation with large diffusion and convection heating at the boundary, which consists of a family of coupled PDE-ODE systems with nonhomogeneous boundary conditions. We analyze the singular limiting problem by examining the convergence of linear and nonlinear problems. We apply the Invariant Manifold Theorem to reduce the problem to finite dimensions and prove the C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>1$$\end{document} convergence of the solutions. Conditions to ensure the structural stability of the system are also derived.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] REACTION-DIFFUSION EQUATIONS WITH SPATIALLY VARIABLE EXPONENTS AND LARGE DIFFUSION
    Simsen, Jacson
    Simsen, Mariza Stefanello
    Teixeira Primo, Marcos Roberto
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (02) : 495 - 506
  • [2] REACTION-DIFFUSION COUPLED INCLUSIONS WITH VARIABLE EXPONENTS AND LARGE DIFFUSION
    Simsen, Jacson
    Simsen, Mariza Stefanello
    Wittbold, Petra
    OPUSCULA MATHEMATICA, 2021, 41 (04) : 539 - 570
  • [3] Absorbing boundary conditions for reaction-diffusion equations
    Szeftel, J
    IMA JOURNAL OF APPLIED MATHEMATICS, 2003, 68 (02) : 167 - 184
  • [4] NON-AUTONOMOUS REACTION-DIFFUSION EQUATIONS WITH VARIABLE EXPONENTS AND LARGE DIFFUSION
    Fernandes, Antonio Carlos
    Goncalves, Marcela Carvalho
    Simsen, Jacson
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (04): : 1485 - 1510
  • [5] STUDY OF ODE LIMIT PROBLEMS FOR REACTION-DIFFUSION EQUATIONS
    Simsen, Jacson
    Simsen, Mariza Stefanello
    Zimmermann, Aleksandra
    OPUSCULA MATHEMATICA, 2018, 38 (01) : 117 - 131
  • [6] Rate of convergence for reaction-diffusion equations with nonlinear Neumann boundary conditions andC1variation of the domain
    Pereira, Marcone C.
    Pires, Leonardo
    JOURNAL OF EVOLUTION EQUATIONS, 2024, 24 (01)
  • [7] Reaction-Diffusion Equations in Immunology
    Bocharov, G. A.
    Volpert, V. A.
    Tasevich, A. L.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2018, 58 (12) : 1967 - 1976
  • [8] COUPLED REACTION-DIFFUSION EQUATIONS
    FREIDLIN, M
    ANNALS OF PROBABILITY, 1991, 19 (01) : 29 - 57
  • [9] Nonlinear boundary output feedback stabilization of reaction-diffusion equations
    Lhachemi, Hugo
    Prieur, Christophe
    SYSTEMS & CONTROL LETTERS, 2022, 166
  • [10] Reaction-diffusion equations with nonlinear boundary conditions in narrow domains
    Freidlin, Mark
    Spiliopoulos, Konstantinos
    ASYMPTOTIC ANALYSIS, 2008, 59 (3-4) : 227 - 249