Electro-Fenton degradation of Rhodamine B with in-situ H2O2 generation by Au nanoparticles modified reduced graphene oxide

被引:0
作者
Wang, Tian [1 ]
Wang, Wei [2 ]
Zhu, Yunqing [3 ]
Zhang, Baozhong [1 ]
机构
[1] Henan Univ Technol, Sch Environm Engn, Zhengzhou 450001, Peoples R China
[2] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Key Lab Adv Fuel Cells & Electrolyzers Technol Zhe, Ningbo 315201, Peoples R China
[3] Shaanxi Univ Sci & Technol, Sch Environm Sci & Engn, Xian 710021, Peoples R China
来源
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING | 2025年 / 13卷 / 02期
关键词
Bifunctional cathode; Reduced graphene; Au nanoparticles; H; 2; O; generation; Rhodamine B; Electro-Fenton; OXIDATION; ENERGY;
D O I
10.1016/j.jece.2025.115685
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
AuNPs/rGO composite cathode was prepared using in-situ reduction method and was applied for H2O2 generation through molecular oxygen (O2) undergoing a 2-electron reduction reaction in the electro-Fenton system. The results showed the AuNPs/rGO cathode exhibited good activity and stability. The size and loading amount of AuNPs, as well as applied voltages were considered for evaluating the catalytic activity of AuNPs/rGO cathode. AuNPs2:1/rGO with the smallest size (2.8 +/- 0.6 nm) exhibited higher catalytic activity in the electro-Fenton system when the AuNPs2:1 loading amount was 2.7 %, pH= 3, and applied voltage was-0.6 V (vs. SCE), resulting in an H2O2 yield of 19.3 +/- 0.1 mmol g- 1. The synergistic effect of AuNPs2:1 and rGO enhanced the activation of H2O2, generating a large number of hydroxyl radicals (center dot OH) for efficient degradation of rhodamine B (RhB), corresponding to a degradation efficiency of 100 % within 30 min. In addition, AuNPs2:1/rGO exhibited excellent stability and reusability in cyclic experiments. The quenching experiment and the radical spin trap test showed center dot OH and superoxide anion (center dot O2 and in-situ FTIR were used to analyze the intermediate products of the degradation process and determine the reaction mechanism. ) as the active species during the reaction process. Furthermore, LC-MS
引用
收藏
页数:10
相关论文
empty
未找到相关数据