Semi-Discrete Predictor-Multicorrector FEM Algorithms for the 2D/3D Unsteady Incompressible Micropolar Fluid Equations

被引:0
作者
Bi, Xiaowei [1 ]
Liu, Demin [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Micropolar fluid equations; predictor-multicorrector algorithm; finite element method; error estimates; NAVIER-STOKES EQUATIONS; PROJECTION METHODS; SCHEME;
D O I
10.4208/aamm.OA-2022-0256
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the first-order and second-order semi-discrete predictormulticorrector (PMC) algorithms to solve the 2D/3D unsteady incompressible micropolar fluid equations (IMNSE) are proposed. In the algorithms, the first-order and second-order BDF formulas are adopted to approximate the time derivative terms. At each time step, two elliptical sub-problems with Dirichlet conditions are solved at the prediction step, the strategy of projection about linear momentum equation with additional viscosity term and the elliptical sub-problems about angular momentum are solved at the multicorrection step. Furthermore, the unconditional stability and error estimates of the first-order scheme are proved theoretically. Numerical experiments are carried out to show the effectiveness of the algorithms.
引用
收藏
页码:1519 / 1548
页数:30
相关论文
共 26 条
[1]   A study of nonlinear variable viscosity in finite-length tube with peristalsis [J].
Abd Elmaboud, Y. ;
Mekheimer, Kh. S. ;
Abdelsalam, Sara I. .
APPLIED BIONICS AND BIOMECHANICS, 2014, 11 (04) :197-206
[2]   UNIVERSAL STABILITY OF MAGNETOMICROPOLAR FLUID MOTIONS [J].
AHMADI, G ;
SHAHINPOOR, M .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1974, 12 (07) :657-663
[3]  
[Anonymous], 2020, FreeFem++, Version 4.5
[4]  
[Anonymous], 1975, Sobolev Spaces
[5]  
Blasco J, 1998, INT J NUMER METH FL, V28, P1391, DOI 10.1002/(SICI)1097-0363(19981230)28:10<1391::AID-FLD699>3.0.CO
[6]  
2-5
[7]   Stability and convergence analysis of rotational velocity correction methods for the Navier-Stokes equations [J].
Chen, Feng ;
Shen, Jie .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (5-6) :3123-3136
[8]   A stabilized finite element predictor-corrector scheme for the incompressible Navier-Stokes equations using a nodal-based implementation [J].
Codina, R ;
Folch, A .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2004, 44 (05) :483-503
[9]   MICROCONTINUUM MODEL OF PULSATILE BLOOD-FLOW [J].
DEBNATH, L .
ACTA MECHANICA, 1976, 24 (3-4) :165-177
[10]   THEORY OF THERMOMICROFLUIDS [J].
ERINGEN, AC .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1972, 38 (02) :480-&