UNMamba: Cascaded Spatial-Spectral Mamba for Blind Hyperspectral Unmixing

被引:0
|
作者
Chen, Dong [1 ]
Zhang, Junping [1 ]
Li, Jiaxin [2 ,3 ]
机构
[1] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin 150001, Peoples R China
[2] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Computat Opt Imaging Technol, Beijing 100094, Peoples R China
[3] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Blind hyperspectral unmixing (HU); endmember loss; linear mixing model (LMM); Mamba; state-space model;
D O I
10.1109/LGRS.2025.3545505
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Blind hyperspectral unmixing (HU) has advanced significantly with the emergence of deep learning-based methods. However, the localized operations of convolutional neural networks (CNNs) and the high computational demands of Transformers present challenges for blind HU. This necessitates the development of image-level unmixing methods capable of capturing long-range spatial-spectral dependencies with low computational demands. This letter proposes a cascaded spatial-spectral Mamba model, termed UNMamba, which leverages the strengths of Mamba to efficiently model long-range spatial-spectral dependencies with linear computational complexity, achieving superior image-level unmixing performance with small parameters and operations. Specifically, UNMamba first captures long-range spatial dependencies, followed by the extraction of global spectral features, forming long-range spatial-spectral dependencies, which are subsequently mapped into abundance maps. Then, the input image is reconstructed using the linear mixing model (LMM), incorporating weighted averages of multiple trainable random sequences and an endmember loss to learn endmembers. UNMamba is the first unmixing approach that introduces the state-space models (SSMs). Extensive experimental results demonstrate that, without relying on any endmember initialization techniques [such as vertex component analysis (VCA)], the proposed UNMamba achieves significantly high unmixing accuracy, outperforming state-of-the-art methods. Codes are available at https://github.com/Preston-Dong/UNMamba.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Spatial-spectral preprocessing for spectral unmixing
    Yan, Yang
    Hua, Wenshen
    Liu, Xun
    Cui, Zihao
    Diao, Dongmei
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2019, 40 (04) : 1357 - 1373
  • [22] A Global Spatial-Spectral Feature Fused Autoencoder for Nonlinear Hyperspectral Unmixing
    Zhang, Mingle
    Yang, Mingyu
    Xie, Hongyu
    Yue, Pinliang
    Zhang, Wei
    Jiao, Qingbin
    Xu, Liang
    Tan, Xin
    REMOTE SENSING, 2024, 16 (17)
  • [23] Spatial-Spectral Sparse Unmixing for Hyperspectral Imagery based on Graph Laplacian
    Gan Yuquan
    Li Lei
    Zhang Ji
    Liu Ying
    AOPC 2021: OPTICAL SPECTROSCOPY AND IMAGING, 2021, 12064
  • [24] HYPERSPECTRAL ENDMEMBER EXTRACTION AND UNMIXING BY A NOVEL SPATIAL-SPECTRAL PREPROCESSING MODULE
    Kowkabi, Fatemeh
    Ghassemian, Hassan
    Keshavarz, Ahmad
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 3382 - 3385
  • [25] Deep Attention-Guided Spatial-Spectral Network for Hyperspectral Image Unmixing
    Qi, Lin
    Yue, Mengyi
    Gao, Feng
    Cao, Bing
    Dong, Junyu
    Gao, Xinbo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [26] Spatial-Spectral Graph Regularized Sparse Nonnegative Matrix Factorization Hyperspectral Unmixing
    Lei, Lin
    Zhang, Hao
    Zhang, Shaoquan
    Zhang, Ningyuan
    Deng, Chengzhi
    Li, Fan
    Wang, Shengqian
    EARTH AND SPACE: FROM INFRARED TO TERAHERTZ, ESIT 2022, 2023, 12505
  • [27] A spatial-spectral clustering-based algorithm for endmember extraction and hyperspectral unmixing
    Cheng, Xiaoyu
    Cai, Zhouyin
    Li, Jia
    Wen, Maoxing
    Wang, Yueming
    Zeng, Dan
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (05) : 1948 - 1972
  • [28] Multiview Spatial-Spectral Two-Stream Network for Hyperspectral Image Unmixing
    Qi, Lin
    Chen, Zhenwei
    Gao, Feng
    Dong, Junyu
    Gao, Xinbo
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [29] SSCU-Net: Spatial-Spectral Collaborative Unmixing Network for Hyperspectral Images
    Qi, Lin
    Gao, Feng
    Dong, Junyu
    Gao, Xinbo
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [30] CASCADED AUTOENCODERS FOR SPECTRAL-SPATIAL REMOTELY SENSED HYPERSPECTRAL IMAGERY UNMIXING
    Shan, Yueshuai
    Zhang, Shaoquan
    Hong, Shanqi
    Li, Fan
    Deng, Chengzhi
    Wang, Shengqian
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3271 - 3274