Genomics-Guided Representation Learning for Pathologic Pan-Cancer Tumor Microenvironment Subtype Prediction

被引:0
作者
Meng, Fangliangzi [1 ,2 ]
Zhang, Hongrun [3 ]
Yan, Ruodan [4 ]
Chuai, Guohui [1 ,2 ]
Li, Chao [4 ,5 ]
Liu, Qi [1 ,2 ]
机构
[1] Tongji Univ, Minist Educ,Key Lab Spine & Spinal Cord Injury Re, Orthopaed Dept,Tongji Hosp,Sch Life Sci & Technol, Frontier Sci Ctr Stem Cell Res,Bioinformat Dept, Shanghai, Peoples R China
[2] Minist Educ, Shanghai Res Inst Intelligent Autonomous Syst, Frontiers Sci Ctr Intelligent Autonomous Syst, Natl Key Lab Autonomous Intelligent Unmanned Syst, Shanghai, Peoples R China
[3] Canc Res UK Cambridge Inst, Cambridge, England
[4] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge, England
[5] Univ Dundee, Sch Sci & Engine, Sch Med, Dundee, Scotland
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT III | 2024年 / 15003卷
基金
中国国家自然科学基金;
关键词
Digital Pathology; Domain Adversarial Training; Oncology; Tumor Microenvironment Genomics;
D O I
10.1007/978-3-031-72384-1_20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The characterization of Tumor MicroEnvironment (TME) is challenging due to its complexity and heterogeneity. Relatively consistent TME characteristics embedded within highly specific tissue features, render them difficult to predict. The capability to accurately classify TME subtypes is of critical significance for clinical tumor diagnosis and precision medicine. Based on the observation that tumors with different origins share similar microenvironment patterns, we propose PathoTME, a genomics-guided Siamese representation learning framework employing Whole Slide Image (WSI) for pan-cancer TME subtypes prediction. Specifically, we utilize Siamese network to leverage genomic information as a regularization factor to assist WSI embeddings learning during the training phase. Additionally, we employ Domain Adversarial Neural Network (DANN) to mitigate the impact of tissue type variations. To eliminate domain bias, a dynamic WSI prompt is designed to further unleash the model's capabilities. Our model achieves better performance than other state-of-the-art methods across 23 cancer types on TCGA dataset. Our code is available at https://github.com/bm2-lab/PathoTME.
引用
收藏
页码:206 / 216
页数:11
相关论文
共 33 条
[1]   Assessment of emerging pretraining strategies in interpretable multimodal deep learning for cancer prognostication [J].
Azher, Zarif L. ;
Suvarna, Anish ;
Chen, Ji-Qing ;
Zhang, Ze ;
Christensen, Brock C. ;
Salas, Lucas A. ;
Vaickus, Louis J. ;
Levy, Joshua J. .
BIODATA MINING, 2023, 16 (01)
[2]   Conserved pan-cancer microenvironment subtypes predict response to immunotherapy [J].
Bagaev, Alexander ;
Kotlov, Nikita ;
Nomie, Krystle ;
Svekolkin, Viktor ;
Gafurov, Azamat ;
Isaeva, Olga ;
Osokin, Nikita ;
Kozlov, Ivan ;
Frenkel, Felix ;
Gancharova, Olga ;
Almog, Nava ;
Tsiper, Maria ;
Ataullakhanov, Ravshan ;
Fowler, Nathan .
CANCER CELL, 2021, 39 (06) :845-+
[3]   ImmPort, toward repurposing of open access immunological assay data for translational and clinical research [J].
Bhattacharya, Sanchita ;
Dunn, Patrick ;
Thomas, Cristel G. ;
Smith, Barry ;
Schaefer, Henry ;
Chen, Jieming ;
Hu, Zicheng ;
Zalocusky, Kelly A. ;
Shankar, Ravi D. ;
Shen-Orr, Shai S. ;
Thomson, Elizabeth ;
Wiser, Jeffrey ;
Butte, Atul J. .
SCIENTIFIC DATA, 2018, 5
[4]   An annotation-free whole-slide training approach to pathological classification of lung cancer types using deep learning [J].
Chen, Chi-Long ;
Chen, Chi-Chung ;
Yu, Wei-Hsiang ;
Chen, Szu-Hua ;
Chang, Yu-Chan ;
Hsu, Tai-I ;
Hsiao, Michael ;
Yeh, Chao-Yuan ;
Chen, Cheng-Yu .
NATURE COMMUNICATIONS, 2021, 12 (01)
[5]   Scaling Vision Transformers to Gigapixel Images via Hierarchical Self-Supervised Learning [J].
Chen, Richard J. ;
Chen, Chengkuan ;
Li, Yicong ;
Chen, Tiffany Y. ;
Trister, Andrew D. ;
Krishnan, Rahul G. ;
Mahmood, Faisal .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :16123-16134
[6]   Pan-cancer integrative histology-genomic analysis via multimodal deep learning [J].
Chen, Richard J. ;
Lu, Ming Y. ;
Williamson, Drew F. K. ;
Chen, Tiffany Y. ;
Lipkova, Jana ;
Noor, Zahra ;
Shaban, Muhammad ;
Shady, Maha ;
Williams, Mane ;
Joo, Bumjin ;
Mahmood, Faisal .
CANCER CELL, 2022, 40 (08) :865-+
[7]  
Chen RJ, 2021, LEARN MEAN REPR LIF
[8]   Exploring Simple Siamese Representation Learning [J].
Chen, Xinlei ;
He, Kaiming .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :15745-15753
[9]   Discovering dominant tumor immune archetypes in a pan-cancer census [J].
Combes, Alexis J. ;
Samad, Bushra ;
Tsui, Jessica ;
Chew, Nayvin W. ;
Yan, Peter ;
Reeder, Gabriella C. ;
Kushnoor, Divyashree ;
Shen, Alan ;
Davidson, Brittany ;
Barczak, Andrea J. ;
Adkisson, Michael ;
Edwards, Austin ;
Naser, Mohammad ;
Barry, Kevin C. ;
Courau, Tristan ;
Hammoudi, Taymour ;
Arguello, Rafael J. ;
Rao, Arjun Arkal ;
Olshen, Adam B. ;
Cai, Cathy ;
Zhan, Jenny ;
Davis, Katelyn C. ;
Kelley, Robin K. ;
Chapman, Jocelyn S. ;
Atreya, Chloe E. ;
Patel, Amar ;
Daud, Adil, I ;
Ha, Patrick ;
Diaz, Aaron A. ;
Kratz, Johannes R. ;
Collisson, Eric A. ;
Fragiadakis, Gabriela K. ;
Erle, David J. ;
Boissonnas, Alexandre ;
Asthana, Saurabh ;
Chan, Vincent ;
Krummel, Matthew F. .
CELL, 2022, 185 (01) :184-+
[10]   Survival Prediction of Brain Cancer with Incomplete Radiology, Pathology, Genomic, and Demographic Data [J].
Cui, Can ;
Liu, Han ;
Liu, Quan ;
Deng, Ruining ;
Asad, Zuhayr ;
Wang, Yaohong ;
Zhao, Shilin ;
Yang, Haichun ;
Landman, Bennett A. ;
Huo, Yuankai .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT V, 2022, 13435 :626-635