Safe Navigation of Autonomous Underwater Vehicles Using Physics-informed Neural Networks

被引:0
|
作者
Majumder, Rudrashis [1 ]
Makam, Rajini [2 ]
Mane, Pruthviraj [2 ]
Bharathwaj, K. S. [2 ]
Sundaram, Suresh [2 ]
机构
[1] Indian Inst Sci, ARTPARK, Bangalore, Karnataka, India
[2] Indian Inst Sci, Dept Aerosp Engn, Bangalore, Karnataka, India
来源
OCEANS 2024 - SINGAPORE | 2024年
关键词
OBSTACLE AVOIDANCE;
D O I
10.1109/OCEANS51537.2024.10682406
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
This research emphasizes the critical role of effective collision avoidance techniques for ensuring the safe operation of Autonomous Underwater Vehicles (AUVs), specifically focusing on integrating obstacle avoidance features into motion planning under different underwater scenarios. The paper focuses on the integration of obstacle avoidance features into motion planning for Autonomous Underwater Vehicles (AUVs) using Control Barrier Function (CBF). The Quadratic Programming (QP) problem with CBF as a constraint is converted to the Hamilton-Jacobi-Bellman (HJB) equation and solved by a Physics-informed Neural Network (PINN), a popular PDE approximator. The novelty of the work lies in proposing an innovative approach combining CBF's safety aspects with PINN for avoiding multiple obstacles, particularly in the depth control maneuvers of AUVs, reducing computational intensity. Depth control trajectory tracking is achieved through switching controls between Proportional-Integral-Derivative (PID) control and underwater sense-and-avoidance PINN (USAAPINN), ensuring safe navigation in the presence of obstacles. Numerical simulations validate the efficacy of the proposed PINN framework.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] PINNProv: Provenance for Physics-Informed Neural Networks
    de Oliveira, Lyncoln S.
    Kunstmann, Liliane
    Pina, Debora
    de Oliveira, Daniel
    Mattoso, Marta
    2023 INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING WORKSHOPS, SBAC-PADW, 2023, : 16 - 23
  • [32] Physics-Informed Neural Networks for Power Systems
    Misyris, George S.
    Venzke, Andreas
    Chatzivasileiadis, Spyros
    2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,
  • [33] On physics-informed neural networks for quantum computers
    Markidis, Stefano
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2022, 8
  • [34] Physics-Informed Neural Networks for shell structures
    Bastek, Jan-Hendrik
    Kochmann, Dennis M.
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2023, 97
  • [35] fPINNs: FRACTIONAL PHYSICS-INFORMED NEURAL NETWORKS
    Pang, Guofei
    Lu, Lu
    Karniadakis, George E. M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (04): : A2603 - A2626
  • [36] Numerical analysis of physics-informed neural networks and related models in physics-informed machine learning
    De Ryck, Tim
    Mishra, Siddhartha
    ACTA NUMERICA, 2024, 33 : 633 - 713
  • [37] GaborPINN: Efficient Physics-Informed Neural Networks Using Multiplicative Filtered Networks
    Huang X.
    Alkhalifah T.
    IEEE Geoscience and Remote Sensing Letters, 2023, 20
  • [38] Referenceless characterization of complex media using physics-informed neural networks
    Goel, Suraj
    Conti, Claudio
    Leedumrongwatthanakun, Saroch
    Malik, Mehul
    OPTICS EXPRESS, 2023, 31 (20) : 32824 - 32839
  • [39] FIELD PREDICTIONS OF HYPERSONIC CONES USING PHYSICS-INFORMED NEURAL NETWORKS
    Villanueva, Daniel
    Paez, Brandon
    Rodriguez, Arturo
    Chattopadhyay, Ashesh
    Kotteda, V. M. Krushnarao
    Baez, Rafael
    Perez, Jose
    Terrazas, Jose
    Kumar, Vinod
    PROCEEDINGS OF ASME 2022 FLUIDS ENGINEERING DIVISION SUMMER MEETING, FEDSM2022, VOL 2, 2022,
  • [40] Numerical Simulation of Streamer Discharge Using Physics-Informed Neural Networks
    Peng, Changzhi
    Sabariego, Ruth V.
    Dong, Xuzhu
    Ruan, Jiangjun
    IEEE TRANSACTIONS ON MAGNETICS, 2024, 60 (03) : 1 - 4