Analogues of composition operators in the setting of non-commutative symmetric spaces

被引:0
作者
de Jager, Pierre [1 ]
机构
[1] Univ South Africa, Dept Math Sci, POB 392, ZA-0003 Pretoria, South Africa
关键词
Composition operators; Jordan homomorphisms; Semi-finite von Neumann algebras; Symmetric spaces;
D O I
10.1007/s13370-025-01315-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Symmetric operator spaces are generalizations of symmetric function spaces such as the classical (commutative) Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>p$$\end{document}-spaces, Orlicz spaces, Lorentz spaces and Banach function spaces. In this setting of (potentially) non-commutative symmetric operator spaces we investigate analogues of composition operators, which are also called quantum composition operators. In particular, we provide sufficient conditions under which a Jordan & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-homomorphism induces a quantum composition operator between non-commutative symmetric spaces and we characterize those bounded operators between non-commutative symmetric spaces that are quantum composition operators. Furthermore, compactness conditions of quantum composition operators are investigated.
引用
收藏
页数:13
相关论文
共 50 条
[41]   Composition Operators on Weighted Banach Spaces of a Tree [J].
Robert F. Allen ;
Matthew A. Pons .
Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41 :1805-1818
[42]   Composition Operators on Dirichlet Spaces and Bloch Space [J].
Cheng, Yuan ;
Kumar, Sanjay ;
Zhou, Ze Hua .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (10) :1775-1784
[43]   WEIGHTED COMPOSITION OPERATORS BETWEEN LORENTZ SPACES [J].
Lo, Ching-On ;
Loh, Anthony Wai-Keung .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 103 (03) :493-505
[44]   Composition operators on Hardy spaces of Riemann surfaces [J].
Yang, Xiangdong .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (03) :351-358
[46]   INVERTIBLE COMPOSITION OPERATORS ON BANACH FUNCTION SPACES [J].
Kumar, Rajeev .
MATEMATICKI VESNIK, 2007, 59 (03) :97-111
[47]   Composition operators on holomorphic variable exponent spaces [J].
Karapetyants, Alexey ;
Restrepo, Joel E. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (14) :8566-8577
[48]   Bicomplex Weighted Bergman Spaces and Composition Operators [J].
Dolkar, Stanzin ;
Kumar, Sanjay .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2023, 33 (04)
[49]   Composition Operators on Dirichlet Spaces and Bloch Space [J].
Yuan CHENG ;
Sanjay KUMAR ;
Ze Hua ZHOU .
ActaMathematicaSinica(EnglishSeries), 2014, 30 (10) :1775-1784
[50]   Composition operators on Dirichlet spaces and Bloch space [J].
Yuan Cheng ;
Sanjay Kumar ;
Ze Hua Zhou .
Acta Mathematica Sinica, English Series, 2014, 30 :1775-1784