Analogues of composition operators in the setting of non-commutative symmetric spaces

被引:0
作者
de Jager, Pierre [1 ]
机构
[1] Univ South Africa, Dept Math Sci, POB 392, ZA-0003 Pretoria, South Africa
关键词
Composition operators; Jordan homomorphisms; Semi-finite von Neumann algebras; Symmetric spaces;
D O I
10.1007/s13370-025-01315-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Symmetric operator spaces are generalizations of symmetric function spaces such as the classical (commutative) Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>p$$\end{document}-spaces, Orlicz spaces, Lorentz spaces and Banach function spaces. In this setting of (potentially) non-commutative symmetric operator spaces we investigate analogues of composition operators, which are also called quantum composition operators. In particular, we provide sufficient conditions under which a Jordan & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-homomorphism induces a quantum composition operator between non-commutative symmetric spaces and we characterize those bounded operators between non-commutative symmetric spaces that are quantum composition operators. Furthermore, compactness conditions of quantum composition operators are investigated.
引用
收藏
页数:13
相关论文
共 50 条
[31]   A survey on composition operators on some function spaces [J].
Emma D’Aniello ;
Martina Maiuriello .
Aequationes mathematicae, 2021, 95 :677-697
[32]   Composition operators acting on weighted Dirichlet spaces [J].
Pau, Jordi ;
Perez, Patricio A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 401 (02) :682-694
[33]   Composition operators on fock-type spaces [J].
Qin, Jie .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (01) :1-14
[34]   Composition operators on Orliez-Lorentz spaces [J].
Kumar, Rajeev ;
Kumar, Romesh .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2008, 60 (01) :79-88
[35]   Hilbert Spaces of Entire Functions and Composition Operators [J].
Doan, Minh Luan ;
Khoi, Le Hai .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2016, 10 (01) :213-230
[36]   Composition Operators on Spaces of Fractional Cauchy Transforms [J].
R. A. Hibschweiler .
Complex Analysis and Operator Theory, 2012, 6 :897-911
[37]   Differences of Composition Operators on Bloch Type Spaces [J].
Yecheng Shi ;
Songxiao Li .
Complex Analysis and Operator Theory, 2017, 11 :227-242
[38]   Bicomplex Weighted Bergman Spaces and Composition Operators [J].
Stanzin Dolkar ;
Sanjay Kumar .
Advances in Applied Clifford Algebras, 2023, 33
[39]   Composition operators on fock-type spaces [J].
Jie Qin .
Indian Journal of Pure and Applied Mathematics, 2023, 54 :1-14
[40]   Composition Operators on Dirichlet Spaces and Bloch Space [J].
Cheng, Yuan ;
Kumar, Sanjay ;
Zhou, Ze Hua .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (10) :1775-1784