Analogues of composition operators in the setting of non-commutative symmetric spaces

被引:0
作者
de Jager, Pierre [1 ]
机构
[1] Univ South Africa, Dept Math Sci, POB 392, ZA-0003 Pretoria, South Africa
关键词
Composition operators; Jordan homomorphisms; Semi-finite von Neumann algebras; Symmetric spaces;
D O I
10.1007/s13370-025-01315-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Symmetric operator spaces are generalizations of symmetric function spaces such as the classical (commutative) Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>p$$\end{document}-spaces, Orlicz spaces, Lorentz spaces and Banach function spaces. In this setting of (potentially) non-commutative symmetric operator spaces we investigate analogues of composition operators, which are also called quantum composition operators. In particular, we provide sufficient conditions under which a Jordan & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-homomorphism induces a quantum composition operator between non-commutative symmetric spaces and we characterize those bounded operators between non-commutative symmetric spaces that are quantum composition operators. Furthermore, compactness conditions of quantum composition operators are investigated.
引用
收藏
页数:13
相关论文
共 50 条
[21]   Composition Operators on Generalized Hardy Spaces [J].
Juliette Leblond ;
Elodie Pozzi ;
Emmanuel Russ .
Complex Analysis and Operator Theory, 2015, 9 :1733-1757
[22]   Composition Operators on Orlicz–Lorentz Spaces [J].
Rajeev Kumar ;
Romesh Kumar .
Integral Equations and Operator Theory, 2008, 60 :79-88
[23]   Composition operators on weighted analytic spaces [J].
Bourass, Marouane ;
Marrhich, Ibrahim ;
Mkadmi, Fouzia .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2023, 66 (04) :1213-1230
[24]   Composition operators on μ-Bloch type spaces [J].
Giménez J. ;
Malavé R. ;
Ramos Fernández J.C. .
Rendiconti del Circolo Matematico di Palermo, 2010, 59 (1) :107-119
[25]   Continuity of composition operators in Sobolev spaces [J].
Bourdaud, Gerard ;
Moussai, Madani .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2019, 36 (07) :2053-2063
[26]   Boundedness of composition operators on Morrey spaces and weak Morrey spaces [J].
Naoya Hatano ;
Masahiro Ikeda ;
Isao Ishikawa ;
Yoshihiro Sawano .
Journal of Inequalities and Applications, 2021
[27]   Boundedness of composition operators on Morrey spaces and weak Morrey spaces [J].
Hatano, Naoya ;
Ikeda, Masahiro ;
Ishikawa, Isao ;
Sawano, Yoshihiro .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
[28]   Semigroups of Composition Operators in Analytic Morrey Spaces [J].
Galanopoulos, Petros ;
Merchan, Noel ;
Siskakis, Aristomenis G. .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2020, 92 (02)
[29]   A survey on composition operators on some function spaces [J].
Emma D’Aniello ;
Martina Maiuriello .
Aequationes mathematicae, 2021, 95 :677-697
[30]   Composition Operators on Spaces of Fractional Cauchy Transforms [J].
Hibschweiler, R. A. .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2012, 6 (04) :897-911