Analogues of composition operators in the setting of non-commutative symmetric spaces

被引:0
作者
de Jager, Pierre [1 ]
机构
[1] Univ South Africa, Dept Math Sci, POB 392, ZA-0003 Pretoria, South Africa
关键词
Composition operators; Jordan homomorphisms; Semi-finite von Neumann algebras; Symmetric spaces;
D O I
10.1007/s13370-025-01315-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Symmetric operator spaces are generalizations of symmetric function spaces such as the classical (commutative) Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>p$$\end{document}-spaces, Orlicz spaces, Lorentz spaces and Banach function spaces. In this setting of (potentially) non-commutative symmetric operator spaces we investigate analogues of composition operators, which are also called quantum composition operators. In particular, we provide sufficient conditions under which a Jordan & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-homomorphism induces a quantum composition operator between non-commutative symmetric spaces and we characterize those bounded operators between non-commutative symmetric spaces that are quantum composition operators. Furthermore, compactness conditions of quantum composition operators are investigated.
引用
收藏
页数:13
相关论文
共 50 条
[11]   Composition operators in the Dirichlet series setting [J].
Quefferlec, Herve .
PERSPECTIVES IN OPERATOR THEORY, 2007, 75 :261-287
[12]   Embeddings of Muntz Spaces: Composition Operators [J].
Noor, S. Waleed .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2012, 73 (04) :589-602
[13]   Composition Operators on Generalized Hardy Spaces [J].
Leblond, Juliette ;
Pozzi, Elodie ;
Russ, Emmanuel .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2015, 9 (08) :1733-1757
[14]   Differences of composition operators on the bloch spaces [J].
Hosokawa, Takuya ;
Ohno, Shuichi .
JOURNAL OF OPERATOR THEORY, 2007, 57 (02) :229-242
[15]   Orlicz Spaces and Their Hyperbolic Composition Operators [J].
Al Ghafri, Mohammed Said ;
Estaremi, Yousef ;
Huang, Zhidong .
MATHEMATICS, 2024, 12 (18)
[16]   Composition Operators on Hilbert Spaces of Sequences [J].
Braha, Naim L. .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2019, 37 (04) :19-23
[17]   COMPACT COMPOSITION OPERATORS ON LORENTZ SPACES [J].
Kumar, Rajeev ;
Kumar, Romesh .
MATEMATICKI VESNIK, 2005, 57 (3-4) :109-112
[18]   AN INTRODUCTION TO COMPOSITION OPERATORS IN SOBOLEV SPACES [J].
Bourdaud, G. .
EURASIAN MATHEMATICAL JOURNAL, 2023, 14 (01) :39-54
[19]   Composition operators on weighted Dirichlet spaces [J].
Zorboska, N .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (07) :2013-2023
[20]   Composition operators on Banach function spaces [J].
Kumar, R ;
Kumar, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (07) :2109-2118