Analogues of composition operators in the setting of non-commutative symmetric spacesAnalogues of composition...P. de Jager

被引:0
|
作者
Pierre de Jager [1 ]
机构
[1] University of South Africa,Department of Mathematical Sciences
关键词
Composition operators; Jordan homomorphisms; Semi-finite von Neumann algebras; Symmetric spaces; Primary 47B33; Secondary 46L52;
D O I
10.1007/s13370-025-01315-8
中图分类号
学科分类号
摘要
Symmetric operator spaces are generalizations of symmetric function spaces such as the classical (commutative) Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-spaces, Orlicz spaces, Lorentz spaces and Banach function spaces. In this setting of (potentially) non-commutative symmetric operator spaces we investigate analogues of composition operators, which are also called quantum composition operators. In particular, we provide sufficient conditions under which a Jordan ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-homomorphism induces a quantum composition operator between non-commutative symmetric spaces and we characterize those bounded operators between non-commutative symmetric spaces that are quantum composition operators. Furthermore, compactness conditions of quantum composition operators are investigated.
引用
收藏
相关论文
共 25 条
  • [1] Analogues of composition operators on non-commutative Hp-spaces
    Labuschagne, LE
    JOURNAL OF OPERATOR THEORY, 2003, 49 (01) : 115 - 141
  • [2] Domination of operators in the non-commutative setting
    Oikhberg, Timur
    Spinu, Eugeniu
    STUDIA MATHEMATICA, 2013, 219 (01) : 35 - 67
  • [3] Non-commutative analogues of weak compactness criteria in symmetric spaces
    Nessipbayev, Y.
    Sukochev, F.
    Tulenov, K.
    ADVANCES IN OPERATOR THEORY, 2021, 6 (02)
  • [4] Non-commutative analogues of weak compactness criteria in symmetric spaces
    Y. Nessipbayev
    F. Sukochev
    K. Tulenov
    Advances in Operator Theory, 2021, 6
  • [5] Non-commutative Grobner bases under composition
    Nordbeck, P
    COMMUNICATIONS IN ALGEBRA, 2001, 29 (11) : 4831 - 4851
  • [6] Completely positive compact operators on non-commutative symmetric spaces
    Dodds, P. G.
    de Pagter, B.
    POSITIVITY, 2010, 14 (04) : 665 - 679
  • [7] Completely positive compact operators on non-commutative symmetric spaces
    P. G. Dodds
    B. de Pagter
    Positivity, 2010, 14 : 665 - 679
  • [8] Nonminimal de Rham–Hodge operators and non-commutative residue
    Jian Wang
    Yong Wang
    Aihui Sun
    Sihui Chen
    Journal of Pseudo-Differential Operators and Applications, 2018, 9 : 365 - 389
  • [9] Dendriform-Tree Setting for Fully Non-commutative Fliess Operators
    Espinosa, Luis A. Duffaut
    Gray, W. Steven
    Ebrahimi-Fard, Kurusch
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2018, 35 (02) : 491 - 521
  • [10] Dendriform-Tree Setting for Fully Non-commutative Fliess Operators
    Espinosa, Luis A. Duffaut
    Gray, W. Steven
    Ebrahimi-Fard, Kurusch
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 4814 - 4819