P2FTrack: Multi-Object Tracking with Motion Prior and Feature Posterior

被引:0
作者
Zhang, Hong [1 ]
Wan, Jiaxu [1 ]
Zhang, Jing [1 ]
Yuan, Ding [1 ]
Li, Xuliang [1 ]
Yang, Yifan [1 ]
机构
[1] Beihang Univ, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
multi-object tracking; prior-posterior fusion; transformer; NETWORK;
D O I
10.1145/3700443
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multiple object tracking (MOT) has emerged as a crucial component of the rapidly developing computer vision. However, existing multi-object tracking methods often overlook the relationship between features and motion, hindering the ability to strike a performance balance between coupled motion and complex scenes. In this work, we propose a novel end-to-end multi-object tracking method that integrates motion and feature information. To achieve this, we introduce a motion prior generator that transforms motion information into attention masks. Additionally, we leverage prior-posterior fusion multi-head attention to combine the motion-derived priors and attention-based posteriors. Our proposed method is extensively evaluated on MOT17 and DanceTrack datasets through comprehensive experiments and ablation studies, demonstrating state-of-the-art performance in the feature-based method with reasonable speed.
引用
收藏
页数:22
相关论文
共 44 条
  • [1] Observations of the Cabibbo-Suppressed decays Λc+ → nπ+ π0, nπ+ π- π+ and the Cabibbo-Favored decay Λc+ → nK- π+ π+*
    Ablikim, M.
    Achasov, M. N.
    Adlarson, P.
    Albrecht, M.
    Aliberti, R.
    Amoroso, A.
    An, M. R.
    An, Q.
    Bai, Y.
    Bakina, O.
    Ferroli, R. Baldini
    Balossino, I
    Ban, Y.
    Batozskaya, V
    Becker, D.
    Begzsuren, K.
    Berger, N.
    Bertani, M.
    Bettoni, D.
    Bianchi, F.
    Bianco, E.
    Bloms, J.
    Bortone, A.
    Boyko, I
    Briere, R. A.
    Brueggemann, A.
    Cai, H.
    Cai, X.
    Calcaterra, A.
    Cao, G. F.
    Cao, N.
    Cetin, S. A.
    Chang, J. F.
    Chang, W. L.
    Che, G. R.
    Chelkov, G.
    Chen, C.
    Chen, Chao
    Chen, G.
    Chen, H. S.
    Chen, M. L.
    Chen, S. J.
    Chen, S. M.
    Chen, T.
    Chen, X. R.
    Chen, X. T.
    Chen, Y. B.
    Chen, Z. J.
    Cheng, W. S.
    Choi, S. K.
    [J]. CHINESE PHYSICS C, 2023, 47 (02)
  • [2] Aharon N, 2022, Arxiv, DOI arXiv:2206.14651
  • [3] Tracking without bells and whistles
    Bergmann, Philipp
    Meinhardt, Tim
    Leal-Taixe, Laura
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 941 - 951
  • [4] Bewley A, 2016, IEEE IMAGE PROC, P3464, DOI 10.1109/ICIP.2016.7533003
  • [5] Observation-Centric SORT: Rethinking SORT for Robust Multi-Object Tracking
    Cao, Jinkun
    Pang, Jiangmiao
    Weng, Xinshuo
    Khirodkar, Rawal
    Kitani, Kris
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 9686 - 9696
  • [6] Chenchen Zhu, 2020, Computer Vision - ECCV 2020. 16th European Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12354), P91, DOI 10.1007/978-3-030-58545-7_6
  • [7] Voice-Face Homogeneity Tells Deepfake
    Cheng, Harry
    Guo, Yangyang
    Wang, Tianyi
    Li, Qi
    Chang, Xiaojun
    Nie, Liqiang
    [J]. ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2024, 20 (03)
  • [8] MeMOTR: Long-Term Memory-Augmented Transformer for Multi-Object Tracking
    Gao, Ruopeng
    Wang, Limin
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 9867 - 9876
  • [9] Ge Z, 2021, Arxiv, DOI [arXiv:2107.08430, DOI 10.48550/ARXIV.2107.08430]
  • [10] He KM, 2017, IEEE I CONF COMP VIS, P2980, DOI [10.1109/TPAMI.2018.2844175, 10.1109/ICCV.2017.322]