Multilayer structures based on phase-change materials for reconfigurable structural color generation

被引:0
|
作者
Emrose, Md Tanvir [1 ,2 ]
Veronis, Georgios [1 ,2 ]
机构
[1] Louisiana State Univ, Sch Elect Engn & Comp Sci, Baton Rouge, LA 70803 USA
[2] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
来源
ACTIVE PHOTONIC PLATFORMS, APP 2024 | 2024年 / 13110卷
关键词
Multilayer structures; tunable color pixel; structural color generation; memetic algorithm; optimization; GST; CIE chromaticity diagram; phase-change materials;
D O I
10.1117/12.3028387
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We introduce multilayer structures based on phase-change materials (PCMs) for reconfigurable structural color generation. These structures can achieve multiple colors within a single pixel. Our optimized structures with a single PCM layer generate two distinct colors by switching between the two phases of the PCM. Similarly, our optimized structures with two PCM layers generate four distinct colors. To achieve maximally distinct colors in the two-color structures, we maximize the distance between the color coordinates on the International Commission on Illumination (CIE) chromaticity diagram. Similarly, in the four-color structures we maximize the minimum distance between the coordinates of the four colors. We use a memetic optimization algorithm to optimize both the material composition and the layer thicknesses of the multilayer structures. To achieve different colors, we consider several PCMs. We find that our design approach leads to large distances between the generated colors on the CIE diagram. Our results could lead to a new class of single-cell multicolor pixels with no power consumption required to retain each color, making them appealing for low refresh rate displays.
引用
收藏
页数:3
相关论文
共 50 条
  • [41] Phase-Change and Ovonic Materials (fifth edition)
    Noe, Pierre
    Kooi, Bart J.
    Wuttig, Matthias
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2024, 18 (10):
  • [42] Phase-Change and Ovonic Materials (Second Edition)
    Noe, Pierre
    Kooi, Bart J.
    Wuttig, Matthias
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2021, 15 (03):
  • [43] Magnetic Transition of Metallic Phase-Change Materials
    He, Chao
    Qiao, Chong
    Yang, Zhe
    Cheng, Weiming
    Tong, Hao
    Miao, Xiangshui
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2021, 15 (03):
  • [44] Phase-Change and Ovonic Materials (Third Edition)
    Noe, Pierre
    Kooi, Bart J.
    Wuttig, Matthias
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2022, 16 (09):
  • [45] A multilevel recording method of phase-change materials
    Xiang, Chaoyu
    Chou, Lih-Hsin
    APPLIED PHYSICS LETTERS, 2010, 96 (17)
  • [46] Tailoring the Structural and Optical Properties of Germanium Telluride Phase-Change Materials by Indium Incorporation
    Wang, Xudong
    Shen, Xueyang
    Sun, Suyang
    Zhang, Wei
    NANOMATERIALS, 2021, 11 (11)
  • [47] Impact of vacancy ordering on thermal transport in crystalline phase-change materials
    Siegert, K. S.
    Lange, F. R. L.
    Sittner, E. R.
    Volker, H.
    Schlockermann, C.
    Siegrist, T.
    Wuttig, M.
    REPORTS ON PROGRESS IN PHYSICS, 2015, 78 (01)
  • [48] Nonvolatile Reconfigurable Phase-Change Metadevices for Beam Steering in the Near Infrared
    de Galarreta, Carlota Ruiz
    Alexeev, Arseny M.
    Au, Yat-Yin
    Lopez-Garcia, Martin
    Klemm, Maciej
    Cryan, Martin
    Bertolotti, Jacopo
    Wright, C. David
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (10)
  • [49] Grayscale Nanopatterning of Phase-Change Materials for Subwavelength-Scaled, Inherently Planar, Nonvolatile, and Reconfigurable Optical Devices
    Hafermann, Martin
    Zapf, Maximilian
    Ritzer, Maurizio
    Printschler, Axel
    Luo, Yue
    Ambrosio, Antonio
    Wilson, William L.
    Ronning, Carsten
    ACS APPLIED NANO MATERIALS, 2020, 3 (05) : 4486 - 4493
  • [50] Reconfigurable Impedance Matching Network for 5G Mid-Band Utilizing Phase-Change Materials
    Singh, Tejinder
    Mansour, Raafat R.
    2023 53RD EUROPEAN MICROWAVE CONFERENCE, EUMC, 2023, : 50 - 53