An efficient numerical scheme on adaptive mesh for solving singularly perturbed quasilinear boundary value problems

被引:0
作者
Duru, Hakki [1 ]
Demirbas, Mutlu [1 ]
Gunes, Baransel [1 ]
机构
[1] Van Yuzuncu Yil Univ, Fac Sci, Dept Math, Van, Turkiye
来源
BULLETIN OF COMPUTATIONAL APPLIED MATHEMATICS | 2024年 / 12卷 / 01期
关键词
Bakhvalov-type mesh; boundary value problem; difference scheme; error estimate; singular perturbation;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the singularly perturbed quasilinear boundary value problem by numerically. Initially, some features of the analytical solution of the presented problem are given. Then, by using quasilinearization technique and interpolating quadrature formulas, the finite difference scheme is constructed on Bakhvalov-type mesh. The convergence estimations of the numerical scheme are provided and three examples are solved to demonstrate the efficiency of the suggested method. The main contribution of this paper is to ensure a uniform finite difference scheme for quasilinear problems with layer behavior.
引用
收藏
页码:11 / 34
页数:24
相关论文
共 39 条
  • [1] Alam MJ., 2021, Journal of Mathematical and Computational Science, V11, P3052, DOI 10.2891/jmcs/5589
  • [2] Amiraliyev GM., 1995, TURKISH J MATH, V19, P207
  • [3] A Novel Numerical Approach for Solving Convection-Diffusion Problem with Boundary Layer Behavior
    Cakir, Musa
    Masiha, R. Younis
    Arslan, Derya
    [J]. GAZI UNIVERSITY JOURNAL OF SCIENCE, 2020, 33 (01): : 152 - 166
  • [4] A Unified Approach to Singularly Perturbed Quasilinear Schrodinger Equations
    Cassani, Daniele
    Wang, Youjun
    Zhang, Jianjun
    [J]. MILAN JOURNAL OF MATHEMATICS, 2020, 88 (02) : 507 - 534
  • [5] Reproducing kernel Hilbert space method for nonlinear second order singularly perturb e d boundary value problems with time-delay
    Chen, Shu-Bo
    Soradi-Zeid, Samaneh
    Dutta, Hemen
    Mesrizadeh, Mehdi
    Jahanshahi, Hadi
    Chu, Yu-Ming
    [J]. CHAOS SOLITONS & FRACTALS, 2021, 144
  • [6] An a posteriori based convergence analysis for a nonlinear singularly perturbed system of delay differential equations on an adaptive mesh
    Das, Pratibhamoy
    [J]. NUMERICAL ALGORITHMS, 2019, 81 (02) : 465 - 487
  • [7] Duru H., 2022, Turk- ish Journal of Mathematics and Computer Science, V14, DOI [10.47000/tjmcs.1010528, DOI 10.47000/TJMCS.1010528]
  • [8] Duru H., 2019, Erzincan University Journal of Science and Technology, V12, P425, DOI [10.18185/erzifbed.479466, DOI 10.18185/ERZIFBED.479466]
  • [9] THE FINITE DIFFERENCE METHOD ON ADAPTIVE MESH FOR SINGULARLY PERTURBED NONLINEAR 1D REACTION DIFFUSION BOUNDARY VALUE PROBLEMS
    Duru, Hakla
    Gunes, Baransel
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTATIONAL MECHANICS, 2020, 19 (04) : 45 - 56
  • [10] Erdogan F., 2018, Mathematics in Natural Science, P17, DOI [10.22436/mns.02.01.01, DOI 10.22436/MNS.02.01.01]