Inhibition of Egr2 Protects against TAC-induced Heart Failure in Mice by Suppressing Inflammation and Apoptosis Via Targeting Acot1 in Cardiomyocytes

被引:0
作者
Hou, Xiaolu [1 ]
Hu, Guoling [2 ]
Wang, Heling [3 ]
Yang, Ying [4 ]
Sun, Qi [5 ]
Bai, Xiuping [1 ]
机构
[1] Harbin Med Univ, Dept Cardiol, Hosp 4, 37 Yiyuan St, Harbin 150001, Peoples R China
[2] Dalian Univ, Dept Geratol, Affiliated Zhongshan Hosp, Dalian, Peoples R China
[3] Langfang Changzheng Hosp, Dept Cardiol, Langfang, Peoples R China
[4] Harbin 242 Hosp, Dept Cardiol, Harbin, Peoples R China
[5] Beidahuang Grp Gen Hosp, Dept Cardiol, Harbin, Peoples R China
关键词
Egr2; Heart failure; Inflammation; Apoptosis; Acot1; MYOCARDIAL DYSFUNCTION; EUROPEAN-SOCIETY; TRANSCRIPTION; ASSOCIATION;
D O I
10.1007/s12265-025-10602-5
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Heart failure (HF) is a clinical syndrome caused by structural or functional abnormalities in heart. Egr2 has been reported to be protective for multiple diseases, but its effect on HF remains unknown. The present study intended to investigate the potential role of Egr2 in HF and its possible downstream effectors. High Egr2 expression in heart was observed in HF mice. Egr2 knockdown alleviated cardiac damage and function in HF mice. Egr2 knockdown inhibited myocardial inflammation and apoptosis both in vivo and in vitro. Egr2 inhibited Acot1 transcription expression via directly binding to its promoter. Acot1 overexpression reduced Lipopolysaccharide (LPS)-induced cardiomyocyte inflammation and apoptosis. Functional rescue experiments revealed that Acot1 reversed the effects of Egr2 on LPS-induced cell apoptosis and inflammation. Overall, Egr2 knockdown might ameliorate HF by inhibiting inflammation and apoptosis in cardiomyocytes by targeting Acot1. This study might provide evidence to better understand the molecular mechanisms of HF pathogenesis.Graphical AbstractEgr2 knockdown might ameliorate HF by inhibiting inflammation and apoptosis in cardiomyocytes, possibly through Acot1.
引用
收藏
页数:12
相关论文
共 52 条
[1]   Reappraising the role of inflammation in heart failure [J].
Adamo, Luigi ;
Rocha-Resende, Cibele ;
Prabhu, Sumanth D. ;
Mann, Douglas L. .
NATURE REVIEWS CARDIOLOGY, 2020, 17 (05) :269-285
[2]  
Alzhrani Abrar A, 2024, Bioinformation, V20, P305, DOI 10.6026/973206300200305
[3]   Unique Transcriptional Profile of Sustained Ligand-Activated Preconditioning in Pre- and Post-Ischemic Myocardium [J].
Ashton, Kevin J. ;
Tupicoff, Amanda ;
Williams-Pritchard, Grant ;
Kiessling, Can J. ;
Hoe, Louise E. See ;
Headrick, John P. ;
Peart, Jason N. .
PLOS ONE, 2013, 8 (08)
[4]   EGR2 is a hub-gene in myocardial infarction and aggravates inflammation and apoptosis in hypoxia-induced cardiomyocytes [J].
Bo, Zhixiang ;
Huang, Shuwen ;
Li, Li ;
Chen, Lin ;
Chen, Ping ;
Luo, Xiaoyi ;
Shi, Fang ;
Zhu, Bing ;
Shen, Lin .
BMC CARDIOVASCULAR DISORDERS, 2022, 22 (01)
[5]   The transverse aortic constriction heart failure animal model: a systematic review and meta-analysis [J].
Bosch, Lena ;
de Haan, Judith J. ;
Bastemeijer, Marissa ;
van der Burg, Jennifer ;
van der Worp, Erik ;
Wesseling, Marian ;
Viola, Margarida ;
Odille, Clemene ;
el Azzouzi, Hamid ;
Pasterkamp, Gerard ;
Sluijter, Joost P. G. ;
Wever, Kimberley E. ;
de Jager, Saskia C. A. .
HEART FAILURE REVIEWS, 2021, 26 (06) :1515-1524
[6]   The transcription factors Egr1 and Egr2 have opposing influences on adipocyte differentiation [J].
Boyle, K. B. ;
Hadaschik, D. ;
Virtue, S. ;
Cawthorn, W. P. ;
Ridley, S. H. ;
O'Rahilly, S. ;
Siddle, K. .
CELL DEATH AND DIFFERENTIATION, 2009, 16 (05) :782-789
[7]   Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure [J].
Bozkurt, Biykem ;
Coats, Andrew J. S. ;
Tsutsui, Hiroyuki ;
Abdelhamid, Ca Magdy ;
Adamopoulos, Stamatis ;
Albert, Nancy ;
Anker, Stefan D. ;
Atherton, John ;
Boehm, Michael ;
Butler, Javed ;
Drazner, Mark H. ;
Felker, G. Michael ;
Filippatos, Gerasimos ;
Fiuzat, Mona ;
Fonarow, Gregg C. ;
Gomez-Mesa, Juan-Esteban ;
Heidenreich, Paul ;
Imamura, Teruhiko ;
Jankowska, Ewa A. ;
Januzzi, James ;
Khazanie, Prateeti ;
Kinugawa, Koichiro ;
Lam, Carolyn S. P. ;
Matsue, Yuya ;
Metra, Marco ;
Ohtani, Tomohito ;
Piepoli, Massimo Francesco ;
Ponikowski, Piotr ;
Rosano, Giuseppe M. C. ;
Sakata, Yasushi ;
Starling, Randall C. ;
Teerlink, John R. ;
Vardeny, Orly ;
Yamamoto, Kazuhiro ;
Yancy, Clyde ;
Zhang, Jian ;
Zieroth, Shelley .
EUROPEAN JOURNAL OF HEART FAILURE, 2021, 23 (03) :352-380
[8]  
Cao XK, 2021, AGING-US, V13, P11188, DOI 10.18632/aging.202785
[9]   The Thioesterase ACOT1 as a Regulator of Lipid Metabolism in Type 2 Diabetes Detected in a Multi-Omics Study of Human Liver [J].
Cavalli, Marco ;
Diamanti, Klev ;
Dang, Yonglong ;
Xing, Pengwei ;
Pan, Gang ;
Chen, Xingqi ;
Wadelius, Claes .
OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY, 2021, 25 (10) :652-659
[10]   Krox20 stimulates adipogenesis via C/EBPβ-dependent and -independent mechanisms [J].
Chen, Z ;
Torrens, JI ;
Anand, A ;
Spiegelman, BM ;
Friedman, JM .
CELL METABOLISM, 2005, 1 (02) :93-106