Fine-Grained Dynamic Network for Generic Event Boundary Detection

被引:0
|
作者
Zheng, Ziwei [1 ]
He, Lijun [1 ]
Yang, Le [1 ]
Li, Fan [1 ]
机构
[1] Xi An Jiao Tong Univ, Xian, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Generic event boundary detection; Dynamic network; Long-form video understanding;
D O I
10.1007/978-3-031-72775-7_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Generic event boundary detection (GEBD) aims at pinpointing event boundaries naturally perceived by humans, playing a crucial role in understanding long-form videos. Given the diverse nature of generic boundaries, spanning different video appearances, objects, and actions, this task remains challenging. Existing methods usually detect various boundaries by the same protocol, regardless of their distinctive characteristics and detection difficulties, resulting in suboptimal performance. Intuitively, a more intelligent and reasonable way is to adaptively detect boundaries by considering their special properties. In light of this, we propose a novel dynamic pipeline for generic event boundaries named DyBDet. By introducing a multi-exit network architecture, DyBDet automatically learns the subnet allocation to different video snippets, enabling fine-grained detection for various boundaries. Besides, a multi-order difference detector is also proposed to ensure generic boundaries can be effectively identified and adaptively processed. Extensive experiments on the challenging Kinetics-GEBD and TAPOS datasets demonstrate that adopting the dynamic strategy significantly benefits GEBD tasks, leading to obvious improvements in both performance and efficiency compared to the current state-of-the-art. The code is available at https://github.com/Ziwei-Zheng/DyBDet.
引用
收藏
页码:107 / 123
页数:17
相关论文
共 50 条
  • [21] A fine-grained parallelization of the immersed boundary method
    Kassen, Andrew
    Shankar, Varun
    Fogelson, Aaron L.
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2022, 36 (04): : 443 - 458
  • [22] Vulnerability Detection with Fine-Grained Interpretations
    Li, Yi
    Wang, Shaohua
    Nguyen, Tien N.
    PROCEEDINGS OF THE 29TH ACM JOINT MEETING ON EUROPEAN SOFTWARE ENGINEERING CONFERENCE AND SYMPOSIUM ON THE FOUNDATIONS OF SOFTWARE ENGINEERING (ESEC/FSE '21), 2021, : 292 - 303
  • [23] PEDNet: A Proposal Enhancement Dynamic Network for Fine-Grained Ship Detection in Optical Remote Sensing Images
    Zhu, Shengbo
    Wei, Lisheng
    IEEE ACCESS, 2024, 12 : 129813 - 129825
  • [24] Fine-Grained Controversy Detection in Wikipedia
    Bykau, Siarhei
    Korn, Flip
    Srivastava, Divesh
    Velegrakis, Yannis
    2015 IEEE 31ST INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE), 2015, : 1573 - 1584
  • [25] Fine-grained Design Pattern Detection
    Lebon, Maurice
    Tzerpos, Vassilios
    2012 IEEE 36TH ANNUAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE (COMPSAC), 2012, : 267 - 272
  • [26] DFRI:DETECTION AND FINE-GRAINED RECOGNITION INTEGRATED NETWORK FOR INSHORE SHIP
    Wu, Silu
    Zhang, Yao
    Tian, Tian
    Tian, Jinwen
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5535 - 5538
  • [27] Heterogeneous network for Hierarchical Fine-Grained Domain Fake News Detection
    Wang, Yue
    Yuan, Shizhong
    Li, Weimin
    Feng, Yifan
    Yu, Xiao
    Liu, Fangfang
    Wang, Can
    Pan, Quanke
    INFORMATION PROCESSING & MANAGEMENT, 2025, 62 (04)
  • [28] SOSNet: A Graph Convolutional Network Approach to Fine-Grained Cyberbullying Detection
    Wang, Jason
    Fu, Kaiqun
    Lu, Chang-Tien
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 1699 - 1708
  • [29] Aircraft target detection and fine-grained recognition based on RHTC network
    Cao X.
    Zou H.
    Cheng F.
    Li R.
    He S.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2021, 43 (12): : 3439 - 3451
  • [30] MalPhase: Fine-Grained Malware Detection Using Network Flow Data
    Piskozub, Michal
    De Gaspari, Fabio
    Barr-Smith, Frederick
    Mancini, Luigi
    Martinovic, Ivan
    ASIA CCS'21: PROCEEDINGS OF THE 2021 ACM ASIA CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2021, : 774 - 786