MINIMAL DYNAMICAL SYSTEMS WITH CLOSED RELATIONS

被引:0
|
作者
Banic, Iztok [1 ,2 ,3 ]
Erceg, Goran [4 ]
Rogina, Rene gril [1 ]
Kennedy, Judy [5 ]
机构
[1] Univ Maribor, Fac Nat Sci & Math, Koroska 160, SI-2000 Maribor, Slovenia
[2] Inst Math Phys & Mech, Jadranska 19, SI-1000 Ljubljana, Slovenia
[3] Univ Primorska, Andrej Marusic Inst, Muzejski Trg 2, SI-6000 Koper, Slovenia
[4] Univ Split, Fac Sci, Rudera Boskov 33, Split, Croatia
[5] Lamar Univ, 200 Lucas Bldg,POB 10047, Beaumont, TX 77710 USA
关键词
Closed relations; dynamical systems; minimal dynamical systems; CR-dynamical systems; minimal CR-dynamical systems; backward minimal CR- dynamical systems; invariant sets; forward orbits; backward orbits; omega limit sets; alpha limit sets; topological conjugations; INVERSE LIMITS; SHIFT MAPS; TRANSITIVITY; CHAOS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce dynamical systems (X, G ) with closed relations G on compact metric spaces X and discuss different types of minimality of such dynamical systems, all of them generalizing minimal dynamical systems (X, f ) with continuous function f on a compact metric space X .
引用
收藏
页码:479 / 505
页数:27
相关论文
共 50 条
  • [41] Dynamically Meaningful Latent Representations of Dynamical Systems
    Nasim, Imran
    Henderson, Michael E.
    MATHEMATICS, 2024, 12 (03)
  • [42] Artificial Biochemical Networks: Evolving Dynamical Systems to Control Dynamical Systems
    Lones, Michael A.
    Fuente, Luis A.
    Turner, Alexander P.
    Caves, Leo S. D.
    Stepney, Susan
    Smith, Stephen L.
    Tyrrell, Andy M.
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2014, 18 (02) : 145 - 166
  • [43] On monomial commutativity of operators satisfying commutation relations and periodic points for one-dimensional dynamical systems
    Tumwesigye, Alex Behakanira
    Silvestrov, Sergei
    10TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES (ICNPAA 2014), 2014, 1637 : 1110 - 1119
  • [44] F-sensitivity and (F1, F2)-sensitivity between dynamical systems and their induced hyperspace dynamical systems
    Li, Risong
    Zhao, Yu
    Wang, Hongqing
    Jiang, Ru
    Liang, Haihua
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (04): : 1640 - 1651
  • [45] Punctures and dynamical systems
    Hassler, Falk
    Heckman, Jonathan J.
    LETTERS IN MATHEMATICAL PHYSICS, 2019, 109 (03) : 449 - 495
  • [46] CLOSED RELATIONS AND EQUIVALENCE CLASSES OF QUASICONTINUOUS FUNCTIONS
    Crannell, Annalisa
    Frantz, Marc
    LeMasurier, Michelle
    REAL ANALYSIS EXCHANGE, 2005, 31 (02) : 409 - 423
  • [47] Dynamical Systems and Sheaves
    Schultz, Patrick
    Spivak, David I.
    Vasilakopoulou, Christina
    APPLIED CATEGORICAL STRUCTURES, 2020, 28 (01) : 1 - 57
  • [48] Punctures and dynamical systems
    Falk Hassler
    Jonathan J. Heckman
    Letters in Mathematical Physics, 2019, 109 : 449 - 495
  • [49] Dynamical systems on hypergraphs
    Carletti, Timoteo
    Fanelli, Duccio
    Nicoletti, Sara
    JOURNAL OF PHYSICS-COMPLEXITY, 2020, 1 (03):
  • [50] ON PERIODIC DYNAMICAL SYSTEMS
    LU WENLIAN CHEN TIANPING Laboratory of Nonlinear Mathematics Science
    ChineseAnnalsofMathematics, 2004, (04) : 455 - 462