MINIMAL DYNAMICAL SYSTEMS WITH CLOSED RELATIONS

被引:0
|
作者
Banic, Iztok [1 ,2 ,3 ]
Erceg, Goran [4 ]
Rogina, Rene gril [1 ]
Kennedy, Judy [5 ]
机构
[1] Univ Maribor, Fac Nat Sci & Math, Koroska 160, SI-2000 Maribor, Slovenia
[2] Inst Math Phys & Mech, Jadranska 19, SI-1000 Ljubljana, Slovenia
[3] Univ Primorska, Andrej Marusic Inst, Muzejski Trg 2, SI-6000 Koper, Slovenia
[4] Univ Split, Fac Sci, Rudera Boskov 33, Split, Croatia
[5] Lamar Univ, 200 Lucas Bldg,POB 10047, Beaumont, TX 77710 USA
关键词
Closed relations; dynamical systems; minimal dynamical systems; CR-dynamical systems; minimal CR-dynamical systems; backward minimal CR- dynamical systems; invariant sets; forward orbits; backward orbits; omega limit sets; alpha limit sets; topological conjugations; INVERSE LIMITS; SHIFT MAPS; TRANSITIVITY; CHAOS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce dynamical systems (X, G ) with closed relations G on compact metric spaces X and discuss different types of minimality of such dynamical systems, all of them generalizing minimal dynamical systems (X, f ) with continuous function f on a compact metric space X .
引用
收藏
页码:479 / 505
页数:27
相关论文
共 50 条
  • [1] Sufficient conditions for non-zero entropy of closed relations
    Banic, Iztok
    Rogina, Rene Gril
    Kennedy, Judy
    Nall, Van
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2024, 44 (11) : 3091 - 3119
  • [2] Crossed products and minimal dynamical systems
    Lin, Huaxin
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2018, 10 (02) : 447 - 469
  • [3] Quotients of Dynamical Systems and Chaos on the Cantor Fan
    Banic, Iztok
    Erceg, Goran
    Kennedy, Judy
    Nall, Van
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2024, 30 (03)
  • [4] Transitive points in CR-dynamical systems
    Banic, Iztok
    Erceg, Goran
    Greenwood, Sina
    Kennedy, Judy
    TOPOLOGY AND ITS APPLICATIONS, 2023, 326
  • [5] Bisimulation relations for dynamical, control, and hybrid systems
    Haghverdi, E
    Tabuada, P
    Pappas, GJ
    THEORETICAL COMPUTER SCIENCE, 2005, 342 (2-3) : 229 - 261
  • [6] Minimal Dynamical Systems on Connected Odd Dimensional Spaces
    Lin, Huaxin
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2015, 67 (04): : 870 - 892
  • [7] A Simple Framework for Identifying Dynamical Systems in Closed-Loop
    Maruta, Ichiro
    Sugie, Toshiharu
    IEEE ACCESS, 2021, 9 : 31441 - 31453
  • [8] Minimal dynamical systems on the product of the Cantor set and the circle II
    Huaxin Lin
    Hiroki Matui
    Selecta Mathematica, 2006, 12
  • [9] Minimal dynamical systems on the product of the Cantor set and the circle II
    Lin, Huaxin
    Matui, Hiroki
    SELECTA MATHEMATICA-NEW SERIES, 2006, 12 (02): : 199 - 239
  • [10] A dynamical classification for crossed products of fiberwise essentially minimal zero-dimensional dynamical systems
    Herstedt, Paul
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2024, 44 (08) : 2229 - 2256