STSF: Spiking Time Sparse Feedback Learning for Spiking Neural Networks

被引:0
|
作者
He, Ping [1 ,2 ]
Xiao, Rong [1 ,2 ]
Tang, Chenwei [1 ,2 ]
Huang, Shudong [1 ,2 ]
Lv, Jiancheng [1 ,2 ]
Tang, Huajin [3 ]
机构
[1] Sichuan Univ, Coll Comp Sci, Chengdu 610065, Peoples R China
[2] Minist Educ, Engn Res Ctr Machine Learning & Ind Intelligence, Chengdu 610065, Peoples R China
[3] Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
Global-local spiking learning; sparse direct feedback alignment (DFA); spiking neural networks (SNNs); vanilla spike-timing-dependent plasticity (STDP); OPTIMIZATION; PLASTICITY; NEURONS;
D O I
10.1109/TNNLS.2025.3527700
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spiking neural networks (SNNs) are biologically plausible models known for their computational efficiency. A significant advantage of SNNs lies in the binary information transmission through spike trains, eliminating the need for multiplication operations. However, due to the spatio-temporal nature of SNNs, direct application of traditional backpropagation (BP) training still results in significant computational costs. Meanwhile, learning methods based on unsupervised synaptic plasticity provide an alternative for training SNNs but often yield suboptimal results. Thus, efficiently training high-accuracy SNNs remains a challenge. In this article, we propose a highly efficient and biologically plausible spiking time sparse feedback (STSF) learning method. This algorithm modifies synaptic weights by incorporating a neuromodulator for global supervised learning using sparse direct feedback alignment (DFA) and local homeostasis learning with vanilla spike-timing-dependent plasticity (STDP). Such neuromorphic global-local learning focuses on instantaneous synaptic activity, enabling independent and simultaneous optimization of each network layer, thereby improving biological plausibility, enhancing parallelism, and reducing storage overhead. Incorporating sparse fixed random feedback connections for global error modulation, which uses selection operations instead of multiplication operations, further improves computational efficiency. Experimental results demonstrate that the proposed algorithm markedly reduces the computational cost with significantly higher accuracy comparable to current state-of-the-art algorithms across a wide range of classification tasks. Our implementation codes are available at https://github.com/hppeace/STSF.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Efficient learning in spiking neural networks
    Rast, Alexander
    Aoun, Mario Antoine
    Elia, Eleni G.
    Crook, Nigel
    NEUROCOMPUTING, 2024, 597
  • [2] Efficient Spiking Neural Networks with Sparse Selective Activation for Continual Learning
    Shen, Jiangrong
    Ni, Wenyao
    Xu, Qi
    Tang, Huajin
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 1, 2024, : 611 - 619
  • [3] Deep learning in spiking neural networks
    Tavanaei, Amirhossein
    Ghodrati, Masoud
    Kheradpisheh, Saeed Reza
    Masquelier, Timothee
    Maida, Anthony
    NEURAL NETWORKS, 2019, 111 : 47 - 63
  • [4] Bayesian continual learning via spiking neural networks
    Skatchkovsky, Nicolas
    Jang, Hyeryung
    Simeone, Osvaldo
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2022, 16
  • [6] Learning rules in spiking neural networks: A survey
    Yi, Zexiang
    Lian, Jing
    Liu, Qidong
    Zhu, Hegui
    Liang, Dong
    Liu, Jizhao
    NEUROCOMPUTING, 2023, 531 : 163 - 179
  • [7] Supervised Learning in Multilayer Spiking Neural Networks
    Sporea, Ioana
    Gruening, Andre
    NEURAL COMPUTATION, 2013, 25 (02) : 473 - 509
  • [8] Exploiting noise as a resource for computation and learning in spiking neural networks
    Ma, Gehua
    Yan, Rui
    Tang, Huajin
    PATTERNS, 2023, 4 (10):
  • [9] Third Generation Neural Networks: Spiking Neural Networks
    Ghosh-Dastidar, Samanwoy
    Adeli, Hojjat
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, 2009, 61 : 167 - +
  • [10] A Review of Computing with Spiking Neural Networks
    Wu, Jiadong
    Wang, Yinan
    Li, Zhiwei
    Lu, Lun
    Li, Qingjiang
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 78 (03): : 2909 - 2939