Comparison of the Self-Organizing Map and the Adaptive Neuro-Fuzzy Inference System in Predicting the Paddy Crop Water Stress Index

被引:0
作者
Workneh, Aschalew Cherie [1 ]
Prasad, K. S. Hari [1 ]
Ojha, Chandra Shekhar Prasad [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Civil Engn, Roorkee 247667, Uttarakhand, India
关键词
Adaptive neuro-fuzzy inference system; Canopy temperature; Crop water stress index; Parameter estimation; Self-organizing map; CANOPY TEMPERATURE; ANFIS; APPLICABILITY; INDICATOR;
D O I
10.1061/JIDEDH.IRENG-10171
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
The present study addresses the applicability of the crop water stress index (CWSI) derived from canopy temperature to detect the crop water stress of paddy crop. The performance of two artificial intelligence techniques, adaptive neuro-fuzzy inference system (ANFIS) and self-organizing map (SOM), are compared while determining the CWSI of paddy crop. Field experiments were conducted with varying irrigation water applications during two seasons in 2021 and 2022. The ANFIS and SOM-simulated CWSI values were compared with the experimentally calculated CWSI (EP-CWSI). Multiple regression analysis was used to determine the upper and lower CWSI baselines. The upper CWSI baseline was found to be a function of crop height and wind speed, while the lower CWSI baseline was a function of crop height, air vapor pressure deficit, and wind speed. The performance of ANFIS and SOM were compared based on mean absolute error (MAE), mean bias error (MBE), root mean squared error (RMSE), index of agreement (d), Nash-Sutcliffe efficiency (NSE), and coefficient of correlation (R2). The ANFIS (R2=0.81, NSE=0.73, d=0.94, RMSE=0.04, MAE=0.00-1.76 and MBE=-2.13-1.32) outperformed the SOM model (R2=0.77, NSE=0.68, d=0.90, RMSE=0.05, MAE=0.00-2.13 and MBE=-2.29-1.45). Overall, the results suggest that ANFIS is a reliable tool for accurately determining CWSI in paddy crops compared to SOM.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Fuzzy nonparametric regression based on an adaptive neuro-fuzzy inference system
    Danesh, Sedigheh
    Farnoosh, Rahman
    Razzaghnia, Tahereh
    NEUROCOMPUTING, 2016, 173 : 1450 - 1460
  • [32] Initialization of Adaptive Neuro-Fuzzy Inference System Using Fuzzy Clustering in Predicting Primary Triage Category
    Aziz, Dhifaf
    Ali, M. A. Mohd
    Gan, K. B.
    Saiboon, Ismail
    2012 4TH INTERNATIONAL CONFERENCE ON INTELLIGENT AND ADVANCED SYSTEMS (ICIAS), VOLS 1-2, 2012, : 170 - 174
  • [33] Geoacoustic inversion using adaptive neuro-fuzzy inference system
    Satyanarayana Yegireddi
    Arvind Kumar
    Computational Geosciences, 2008, 12 : 513 - 523
  • [34] Adaptive Neuro-Fuzzy Inference System for Classification of ECG Signal
    Muthuvel, K.
    Suresh, L. Padma
    PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON CIRCUITS, POWER AND COMPUTING TECHNOLOGIES (ICCPCT 2013), 2013, : 1162 - 1166
  • [35] Adaptive Neuro-Fuzzy Inference System for Assessing the Maintainability of the Software
    Therasa, P. R.
    Vivekanandan, P.
    2017 NINTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING (ICOAC), 2017, : 204 - 212
  • [36] Image Interpolation Based on Adaptive Neuro-Fuzzy Inference System
    Maleki, Shiva Aghapour
    Tinati, Mohammad Ali
    Tazehkand, Behzad Mozaffari
    2019 3RD INTERNATIONAL CONFERENCE ON IMAGING, SIGNAL PROCESSING AND COMMUNICATION (ICISPC), 2019, : 78 - 84
  • [37] Geoacoustic inversion using adaptive neuro-fuzzy inference system
    Yegireddi, Satyanarayana
    Kumar, Arvind
    COMPUTATIONAL GEOSCIENCES, 2008, 12 (04) : 513 - 523
  • [38] FORECASTING THE RAINFALL DATA BY ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM
    Yarar, Alpaslan
    Onucyildiz, Mustafa
    Sevimli, M. Faik
    SGEM 2009: 9TH INTERNATIONAL MULTIDISCIPLINARY SCIENTIFIC GEOCONFERENCE, VOL II, CONFERENCE PROCEEDING: MODERN MANAGEMENT OF MINE PRODUCING, GEOLOGY AND ENVIRONMENTAL PROTECTION, 2009, : 191 - +
  • [39] An adaptive neuro-fuzzy inference system for sleep spindle detection
    Liang, Sheng-Fu
    Kuo, Chih-En
    Hu, Yu-Han
    Chen, Chun-Yu
    Li, Yu-Hung
    2012 INTERNATIONAL CONFERENCE ON FUZZY THEORY AND ITS APPLICATIONS (IFUZZY2012), 2012, : 369 - 373
  • [40] Text Summarization Using Adaptive Neuro-Fuzzy Inference System
    Warule, Pratiksha D.
    Sawarkar, S. D.
    Gulati, Archana
    COMPUTING AND NETWORK SUSTAINABILITY, 2019, 75