Probabilistic poly-Bernoulli numbers

被引:1
作者
Liu, Wencong [1 ,2 ]
Ma, Yuankui [2 ]
Kim, Taekyun [2 ,3 ]
Kim, Dae San [4 ]
机构
[1] Northwest Univ, Sch Math, Xian, Shaanxi, Peoples R China
[2] Xian Technol Univ, Sch Sci, Xian, Shaanxi, Peoples R China
[3] Kwangwoon Univ, Dept Math, Seoul 139701, South Korea
[4] Sogang Univ, Dept Math, Seoul, South Korea
关键词
Modified probabilistic Bernoulli polynomials associated with <italic>Y</italic>; proba-bilistic poly-Bernoulli numbers associated with <italic>Y</italic>; probabilistic numbers associated with <italic>Y</italic>; DEGENERATE BERNOULLI; STIRLING NUMBERS; POLYNOMIALS;
D O I
10.1080/13873954.2024.2427306
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Assume that is Y a random variable whose moment generating function exists in a neighbourhood of the origin. The aim of this paper is to study probabilistic poly-Bernoulli numbers associated with Y, as probabilistic extensions of poly-Bernoulli numbers. We derive explicit expressions, some related identities and a symmetric relation for those numbers. We also investigate explicit expressions for the modified probabilisitc Bernoulli numbers associated with Y, which are slightly different from probabilisitic Bernoulli numbers associated with Y. As special cases of Y, we treat the Poisson, gamma and Bernoulli random variables.
引用
收藏
页码:840 / 856
页数:17
相关论文
共 42 条
  • [1] Abramowitz M., 1964, National Bureau of Standards Applied Mathematics Series
  • [2] Explicit expressions and integral representations for the Stirling numbers. A probabilistic approach
    Adell, Jose A.
    Lekuona, Alberto
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [3] A probabilistic generalization of the Stirling numbers of the second kind
    Adell, Jose A.
    Lekuona, Alberto
    [J]. JOURNAL OF NUMBER THEORY, 2019, 194 : 335 - 355
  • [4] A NOTE ON EASY PROOFS OF STIRLING THEOREM
    BLYTH, CR
    PATHAK, PK
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1986, 93 (05) : 376 - 379
  • [5] BOUBELLOUTA KHADIDJA, 2020, Advanced Studies in Contemporary Mathematics, V30, P307
  • [6] Boyadzhiev KN., 2022, Proc Jangjeon Math Soc, V25, P227
  • [7] THE R-STIRLING NUMBERS
    BRODER, AZ
    [J]. DISCRETE MATHEMATICS, 1984, 49 (03) : 241 - 259
  • [8] Carlitz L., 1979, UTILITAS MATHEMATICA, V15, P51, DOI 10.12691/tjant-3-4-3
  • [9] Probabilistic degenerate central Bell polynomials
    Chen, Li
    Kim, Taekyun
    Kim, Dae San
    Lee, Hyunseok
    Lee, Si-Hyeon
    [J]. MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2024, 30 (01) : 523 - 542
  • [10] Probabilistic type 2 Bernoulli and Euler polynomials
    Chen, Li
    Dolgy, Dmitry, V
    Kim, Taekyun
    Kim, Dae San
    [J]. AIMS MATHEMATICS, 2024, 9 (06): : 14312 - 14324