Rational curves on moduli spaces of vector bundles

被引:1
|
作者
Mustopa, Yusuf [1 ]
Teixidor i Bigas, Montserrat [2 ]
机构
[1] Univ Massachusetts Boston, Dept Math, 100 Morrissey Blvd, Boston, MA 02125 USA
[2] Tufts Univ, Math Dept, 177 Coll Ave, Medford, MA 02155 USA
关键词
moduli spaces of vector bundles; rational curves; rational connectedness; Hilbert scheme; BRILL-NOETHER; CONJECTURE; FAMILIES;
D O I
10.1142/S0129167X24500800
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
W describe the unobstructed components of the Hilbert Scheme of rational curves of fixed degree k in the moduli space U-C(r,L) of stable vector bundles of rank r and determinant L on a curve C. We show that for every k, there are gcd(r,deg L) such components. We construct obstructed components of the Hilbert Scheme. We also obtain an upper bound on the degree of rational connectedness of U-C(r,L) which is linear in the dimension.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Geometric Manin's conjecture and rational curves
    Lehmann, Brian
    Tanimoto, Sho
    COMPOSITIO MATHEMATICA, 2019, 155 (05) : 833 - 862
  • [42] Quasimaps to moduli spaces of sheaves
    Nesterov, Denis
    FORUM OF MATHEMATICS PI, 2025, 13
  • [43] Incident rational curves
    Ziv Ran
    European Journal of Mathematics, 2021, 7 : 226 - 234
  • [44] The global geometry of the moduli space of curves
    Farkas, Gavril
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS: ALGEBRAIC GEOMETRY SEATTLE 2005, VOL 80, PTS 1 AND 2, 2009, 80 : 125 - 147
  • [45] LINEAR SYSTEMS OF RATIONAL CURVES ON RATIONAL SURFACES
    Daigle, Daniel
    Melle-Hernandez, Alejandro
    MOSCOW MATHEMATICAL JOURNAL, 2012, 12 (02) : 261 - 268
  • [46] JET BUNDLES ON GORENSTEIN CURVES AND APPLICATIONS
    Gatto, Letterio
    Ricolfi, Andrea T.
    JOURNAL OF SINGULARITIES, 2020, 21 : 50 - 83
  • [47] Stability of normal bundles of space curves
    Coskun, Izzet
    Larson, Eric
    Vogt, Isabel
    ALGEBRA & NUMBER THEORY, 2022, 16 (04) : 919 - 953
  • [48] Mapping rational rotation-minimizing frames from polynomial curves on to rational curves
    Farouki, Rida T.
    Sir, Zbynek
    COMPUTER AIDED GEOMETRIC DESIGN, 2020, 78
  • [50] Rational curves and bounds on the Picard number of Fano manifolds
    Novelli, Carla
    Occhetta, Gianluca
    GEOMETRIAE DEDICATA, 2010, 147 (01) : 207 - 217