Data Mining and Machine Learning-Based Predictive Model to Support Decision-Making for the Accreditation of Learning Programmes at the Higher Education Authority

被引:0
作者
Kawesha, Francis [1 ]
Phiri, Jackson [1 ]
机构
[1] Univ Zambia, Lusaka 10101, Zambia
来源
PROCEEDINGS OF NINTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, VOL 5, ICICT 2024 | 2024年 / 1000卷
关键词
Accreditation; Higher education; Data mining; Machine learning; Predictive model; Decision-making; Education quality; HEA;
D O I
10.1007/978-981-97-3289-0_29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accreditation of learning programmes is a critical process for ensuring the quality and standards of higher education institutions. This paper presents a predictive model leveraging data mining and machine learning techniques to enhance decision-making in the accreditation of learning programmes at the Higher Education Authority (HEA). The proposed model utilizes historical data, including institutional, programme-specific, and performance-related features, to predict the likelihood of accreditation success. We demonstrate how this predictive model can assist HEA in allocating resources efficiently and making informed decisions about accreditation, ultimately improving the quality and accountability of higher education.
引用
收藏
页码:351 / 361
页数:11
相关论文
共 28 条
[1]   Cross-study validation for the assessment of prediction algorithms [J].
Bernau, Christoph ;
Riester, Markus ;
Boulesteix, Anne-Laure ;
Parmigiani, Giovanni ;
Huttenhower, Curtis ;
Waldron, Levi ;
Trippa, Lorenzo .
BIOINFORMATICS, 2014, 30 (12) :105-112
[2]   Strengthening organizational performance through accreditation research-a framework for twelve interrelated studies: The ACCREDIT project study protocol [J].
Braithwaite J. ;
Westbrook J. ;
Johnston B. ;
Clark S. ;
Brandon M. ;
Banks M. ;
Hughes C. ;
Greenfield D. ;
Pawsey M. ;
Corbett A. ;
Georgiou A. ;
Callen J. ;
Vretveit J. ;
Pope C. ;
Sũol R. ;
Shaw C. ;
Debono D. ;
Westbrook M. ;
Hinchcliff R. ;
Moldovan M. .
BMC Research Notes, 4 (1)
[3]   Accreditation of general practices: challenges and lessons [J].
Buetow, SA ;
Wellingham, J .
QUALITY & SAFETY IN HEALTH CARE, 2003, 12 (02) :129-135
[4]   Performance of Machine Learning Classifiers in Classifying Stunting among Under-Five Children in Zambia [J].
Chilyabanyama, Obvious Nchimunya ;
Chilengi, Roma ;
Simuyandi, Michelo ;
Chisenga, Caroline C. ;
Chirwa, Masuzyo ;
Hamusonde, Kalongo ;
Saroj, Rakesh Kumar ;
Iqbal, Najeeha Talat ;
Ngaruye, Innocent ;
Bosomprah, Samuel .
CHILDREN-BASEL, 2022, 9 (07)
[5]  
Cirelli J., 2018, P INT C IND ENG OP M, V2018, P1395
[6]  
Dill D.D., 1996, Change, V28, P17, DOI DOI 10.1080/00091383.1996.9937136
[7]  
Ewell P.T., 2008, New Directions for Institutional Research, V2008, P7
[8]  
Gaston P L., 2023, Higher education accreditation: How it's changing, why it must
[9]   Can we simplify the hospital accreditation process? Predicting accreditation decisions from a reduced dataset of focus priority standards and quality indicators: results of predictive modelling [J].
Guerin, Sophie ;
Le Pogam, Marie-Annick ;
Robillard, Benjamin ;
Le Vaillant, Marc ;
Lucet, Bruno ;
Gardel, Christine ;
Grenier, Catherine ;
Loirat, Philippe .
BMJ OPEN, 2013, 3 (08)
[10]  
Hale CA., 2013, Int J Multiple Res Approaches, P3825, DOI [10.5172/mra.2013.3825, DOI 10.5172/MRA.2013.3825]