Lighter, Better, Faster Multi-source Domain Adaptation with Gaussian Mixture Models and Optimal Transport

被引:0
|
作者
Montesuma, Eduardo Fernandes [1 ]
Mboula, Fred Ngole [1 ]
Souloumiac, Antoine [1 ]
机构
[1] Univ Paris Saclay, CEA, LIST, F-91120 Palaiseau, France
关键词
Domain Adaptation; Optimal Transport; Gaussian Mixture Models;
D O I
10.1007/978-3-031-70365-2_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we tackle Multi-Source Domain Adaptation (MSDA), a task in transfer learning where one adapts multiple heterogeneous, labeled source probability measures towards a different, unlabeled target measure. We propose a novel framework for MSDA, based on Optimal Transport (OT) and Gaussian Mixture Models (GMMs). Our framework has two key advantages. First, OT between GMMs can be solved efficiently via linear programming. Second, it provides a convenient model for supervised learning, especially classification, as components in the GMM can be associated with existing classes. Based on the GMM-OT problem, we propose a novel technique for calculating barycenters of GMMs. Based on this novel algorithm, we propose two new strategies for MSDA: GMM-Wasserstein Barycenter Transport (WBT) and GMM-Dataset Dictionary Learning (DaDiL). We empirically evaluate our proposed methods on four benchmarks in image classification and fault diagnosis, showing that we improve over the prior art while being faster and involving fewer parameters ((sic) Our code is publicly available at https://github.com/eddardd/gmm_msda).
引用
收藏
页码:21 / 38
页数:18
相关论文
共 50 条
  • [41] Weighted progressive alignment for multi-source domain adaptation
    Kunhong Wu
    Liang Li
    Yahong Han
    Multimedia Systems, 2023, 29 : 117 - 128
  • [42] Riemannian representation learning for multi-source domain adaptation
    Chen, Sentao
    Zheng, Lin
    Wu, Hanrui
    PATTERN RECOGNITION, 2023, 137
  • [43] Multi-Source Unsupervised Domain Adaptation with Prototype Aggregation
    Huang, Min
    Xie, Zifeng
    Sun, Bo
    Wang, Ning
    MATHEMATICS, 2025, 13 (04)
  • [44] Multi-Source Domain Adaptation for Visual Sentiment Classification
    Lin, Chuang
    Zhao, Sicheng
    Meng, Lei
    Chua, Tat-Seng
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 2661 - 2668
  • [45] Attention-Based Multi-Source Domain Adaptation
    Zuo, Yukun
    Yao, Hantao
    Xu, Changsheng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3793 - 3803
  • [46] Improved multi-source domain adaptation by preservation of factors
    Schrom, Sebastian
    Hasler, Stephan
    Adamy, Juergen
    IMAGE AND VISION COMPUTING, 2021, 112
  • [47] Universal multi-Source domain adaptation for image classification
    Yin, Yueming
    Yang, Zhen
    Hu, Haifeng
    Wu, Xiaofu
    PATTERN RECOGNITION, 2022, 121
  • [48] Multi-source based approach for Visual Domain Adaptation
    Tiwari, Mrinalini
    Sanodiya, Rakesh Kumar
    Mathew, Jimson
    Saha, Sriparna
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [49] Multi-source domain adaptation for panoramic semantic segmentation
    Jiang, Jing
    Zhao, Sicheng
    Zhu, Jiankun
    Tang, Wenbo
    Xu, Zhaopan
    Yang, Jidong
    Liu, Guoping
    Xing, Tengfei
    Xu, Pengfei
    Yao, Hongxun
    INFORMATION FUSION, 2025, 117
  • [50] Structure-Preserved Multi-Source Domain Adaptation
    Liu, Hongfu
    Shao, Ming
    Fu, Yun
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2016, : 1059 - 1064