GCNet: Global Context-Guided Uncertainty Boundary for Polyp Segmentation

被引:0
作者
Zhang, Xuejun [1 ]
Chen, Jiajia [1 ]
Gui, Jie [1 ]
Du, Xiuquan [1 ]
Sha, Wen [1 ]
机构
[1] Anhui Univ, Sch Comp Sci & Technol, Key Lab Intelligent Comp & Signal Proc, Minist Educ, Hefei, Peoples R China
来源
PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT XV | 2025年 / 15045卷
关键词
polyp segmentation; center dot global context; center dot polyp boundary;
D O I
10.1007/978-981-97-8499-8_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Colorectal cancer, with the third highest incidence and mortality rates, underscores the importance of accurately segmenting polyps in colonoscopy images. Despite advancements in deep learning-based methods, several challenges persist: (1) The uneven surface of the colon wall introduces significant background noise in images; (2) The varied sizes of colonic polyps make detection difficult; (3) The potential of cross-layer features is not fully harnessed. Addressing these issues, we propose the Global context-guided uncertainty boundary for polyp segmentation (GCNet). Our method leverages cross-layer features for both boundary and global context extraction, enhancing its expressive capabilities. The Global Context Extraction Module (GCEM) obtains global context with different polyp sizes. Concurrently, the boundary Extraction Module (BEM) is capable of obtaining accurate boundaries in the presence of a large amount of background noise. Moreover, boundary information and residual information enhanced via the Uncertainty Residual Attention Module (URAM) are incorporated into the network to generate finer segmentation maps. Experimental results on five public datasets demonstrate that the proposed GCNet outperforms recent stateof-the-art competing methods. All code is available at https://github. com/dxqllp/GCNet.
引用
收藏
页码:195 / 209
页数:15
相关论文
共 37 条
[1]   Towards automatic polyp detection with a polyp appearance model [J].
Bernal, J. ;
Sanchez, J. ;
Vilarino, F. .
PATTERN RECOGNITION, 2012, 45 (09) :3166-3182
[2]   WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians [J].
Bernal, Jorge ;
Javier Sanchez, F. ;
Fernandez-Esparrach, Gloria ;
Gil, Debora ;
Rodriguez, Cristina ;
Vilarino, Fernando .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2015, 43 :99-111
[3]   Effect of Colonoscopy Screening on Risks of Colorectal Cancer and Related Death [J].
Bretthauer, M. ;
Loberg, M. ;
Wieszczy, P. ;
Kalager, M. ;
Emilsson, L. ;
Garborg, K. ;
Rupinski, M. ;
Dekker, E. ;
Spaander, M. ;
Bugajski, M. ;
Holme, O. ;
Zauber, A. G. ;
Pilonis, N. D. ;
Mroz, A. ;
Kuipers, E. J. ;
Shi, J. ;
Hernan, M. A. ;
Adami, H-O ;
Regula, J. ;
Hoff, G. ;
Kaminski, M. F. .
NEW ENGLAND JOURNAL OF MEDICINE, 2022, 387 (17) :1547-1556
[4]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[5]   Reverse Attention for Salient Object Detection [J].
Chen, Shuhan ;
Tan, Xiuli ;
Wang, Ben ;
Hu, Xuelong .
COMPUTER VISION - ECCV 2018, PT IX, 2018, 11213 :236-252
[6]  
Cheng B, 2021, ADV NEUR IN, V34
[7]  
Deng-Ping Fan, 2020, Medical Image Computing and Computer Assisted Intervention - MICCAI 2020. 23rd International Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12266), P263, DOI 10.1007/978-3-030-59725-2_26
[8]  
Dong B, 2024, Arxiv, DOI [arXiv:2108.06932, 10.26599/air.2023.9150015, DOI 10.26599/AIR.2023.9150015, 10.26599/AIR.2023.9150015]
[9]  
Du XQ, 2022, PROCEEDINGS OF THE THIRTY-FIRST INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2022, P877
[10]   Selective Feature Aggregation Network with Area-Boundary Constraints for Polyp Segmentation [J].
Fang, Yuqi ;
Chen, Cheng ;
Yuan, Yixuan ;
Tong, Kai-yu .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT I, 2019, 11764 :302-310