Solving the Convection-Diffusion Equations via a Multiscale and Discontinuous Galerkin Approach

被引:0
作者
de Jesus, Eneas Mendes [1 ,2 ]
dos Santos, Isaac Pinheiro [2 ,3 ]
机构
[1] Fed Inst Espirito Santo IFES, 660 Augusto Costa de Oliveira St, BR-29285000 Piuma, ES, Brazil
[2] Fed Univ Espirito Santo UFES, Postgrad Program Comp Sci PPGI, Ave Fernando Ferrari 514, BR-29075910 Vitoria, ES, Brazil
[3] Fed Univ Espirito Santo UFES, Dept Appl Math DMA, BR 101,Km 60 Litoraneo, BR-29932540 Mateus, ES, Brazil
来源
COMPUTATIONAL SCIENCE AND ITS APPLICATIONS-ICCSA 2024, PT I | 2024年 / 14813卷
关键词
Convection-Diffusion equations; Convection-dominated; Discontinuous Galerkin; Artificial diffusion; Multiscale discontinuous Galerkin method; FINITE-ELEMENT METHODS;
D O I
10.1007/978-3-031-64605-8_8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a multiscale and discontinuous Galerkin approach for solving the convection-dominated diffusion problems. The unresolved fine-scales are discretized element-wise using bubble functions. A discontinuous Galerkin discretization is employed in the resolved macro scales. To enhance stability to the numerical formulation, we add a nonlinear artificial diffusion operator inside of the elements, acting on both scales, and an extra stabilization on the interelement edges. Numerical tests demonstrate that the method is stable and accurate in solving transport problems with dominant convection.
引用
收藏
页码:112 / 124
页数:13
相关论文
共 15 条
[1]   Bubble stabilization of discontinuous Galerkin methods [J].
Antonietti, Paola F. ;
Brezzi, Franco ;
Marini, L. Donatella .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (21-26) :1651-1659
[2]  
Arruda N.C., 2010, Mec. Comput., V29, P2011
[3]   Discontinuous subgrid formulations for transport problems [J].
Arruda, Natalia C. B. ;
Almeida, Regina C. ;
Dutra do Carmo, Eduardo G. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (49-52) :3227-3236
[4]   DISCONTINUOUS GALERKIN METHODS FOR ADVECTION-DIFFUSION-REACTION PROBLEMS [J].
Ayuso, Blanca ;
Marini, L. Donatella .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (02) :1391-1420
[5]   THE RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR CONSERVATION-LAWS .4. THE MULTIDIMENSIONAL CASE [J].
COCKBURN, B ;
HOU, SC ;
SHU, CW .
MATHEMATICS OF COMPUTATION, 1990, 54 (190) :545-581
[6]  
DiPietro DA, 2012, MATH APPL-BERLIN, V69, P1, DOI 10.1007/978-3-642-22980-0
[7]   On reducing spurious oscillations in discontinuous Galerkin (DG) methods for steady-state convection-diffusion equations [J].
Frerichs, Derk ;
John, Volker .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 393
[8]   On a technique for reducing spurious oscillations in DG solutions of convection-diffusion equations [J].
Frerichs-Mihov, Derk ;
John, Volker .
APPLIED MATHEMATICS LETTERS, 2022, 129
[9]   Discontinuous hp-finite element methods for advection-diffusion-reaction problems [J].
Houston, P ;
Schwab, C ;
Süli, E .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (06) :2133-2163
[10]   On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations:: Part II -: Analysis for P1 and Q1 finite elements [J].
John, Volker ;
Knobloch, Petr .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (21-24) :1997-2014