Predicting creep behavior in composites from microstructural features using deep learning

被引:0
作者
Gu, Aijun [1 ]
Sang, Sheng [2 ]
机构
[1] Yangzhou Univ, Coll Hydraul Sci & Engn, Yangzhou 225009, Peoples R China
[2] Bethany Lutheran Coll, Dept Engn Sci, Mankato, MN 56001 USA
关键词
TENSILE CREEP; FIBER;
D O I
10.1063/5.0229859
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This study uses a multilayer perceptron deep learning model to predict creep strain vs time curves in composite materials based on their microstructural features. Finite element simulations generate ground truth data for model training and validation. The multilayer perceptron model, trained on this comprehensive dataset, effectively captures the complex relationships between the microstructure and creep behavior, achieving high accuracy. Comparative analysis with traditional models shows the multilayer perceptron model's superior performance. This demonstrates the model's potential for reliable application in various engineering fields, offering improved predictions of composite material behavior under creep conditions. (c) 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:7
相关论文
共 19 条
  • [1] Woods and composites cantilever beam: A comprehensive review of experimental and numerical creep methodologies
    Asyraf, M. R. M.
    Ishak, M. R.
    Sapuan, S. M.
    Yidris, N.
    Ilyas, R. A.
    [J]. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2020, 9 (03): : 6759 - 6776
  • [2] Creep behavior and failure mechanisms of CVI and PIP SiC/SiC composites at temperatures to 1650 °C in air
    Bhatt, R. T.
    Kiser, J. D.
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2021, 41 (13) : 6196 - 6206
  • [3] Identification of plasticity-controlled creep and fatigue failure mechanisms in transversely loaded unidirectional thermoplastic composites
    Erartsin, Ozan
    van Drongelen, Martin
    Govaert, Leon E.
    [J]. JOURNAL OF COMPOSITE MATERIALS, 2021, 55 (14) : 1947 - 1965
  • [4] Enhanced creep resistance of GFRP composites through interpenetrating polymer network
    Gupta, B. N. V. S. Ganesh K.
    Sen, Bhaskar
    Hiremath, Mritunjay Maharudrayya
    Prusty, Rajesh Kumar
    Ray, Bankim Chandra
    [J]. INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2021, 212 (212)
  • [5] Predicting creep failure by machine learning-which features matter?
    Hiemer, Stefan
    Moretti, Paolo
    Zapperi, Stefano
    Zaiser, Michael
    [J]. FORCES IN MECHANICS, 2022, 9
  • [6] Tensile creep behaviour of unidirectional flax fibre reinforced bio-based epoxy composites
    Jia, Yunlong
    Fiedler, Bodo
    [J]. COMPOSITES COMMUNICATIONS, 2020, 18 : 5 - 12
  • [7] Modeling creep behavior in ceramic matrix composites
    Khafagy, Khaled H.
    Sorini, Christopher
    Skinner, Travis
    Chattopadhyay, Aditi
    [J]. CERAMICS INTERNATIONAL, 2021, 47 (09) : 12651 - 12660
  • [8] Modeling and Sensitivity Analysis of Concrete Creep with Machine Learning Methods
    Li, Kai
    Long, Yunpeng
    Wang, Hao
    Wang, Yuan-Feng
    [J]. JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2021, 33 (08)
  • [9] Characterization and modeling of the creep behavior of fiber composites with tension and compression asymmetry
    Lv, Jiaxin
    Xiao, Yi
    Zhou, Yun
    Xie, Yuanhong
    [J]. INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2020, 170
  • [10] Raghavan J, 1997, COMPOS SCI TECHNOL, V57, P1673, DOI 10.1016/S0266-3538(97)00104-8