INVARIANT SUBSPACES OF ANALYTIC PERTURBATIONS

被引:0
|
作者
Das, S. [1 ]
Sarkar, J. [1 ]
机构
[1] Indian Stat Inst, Stat & Math Unit, 8th Mile,Mysore Rd, Bangalore 560059, India
关键词
Perturbations; reproducing kernels; shift operators; invariant subspaces; inner functions; Toeplitz operators; commutants; ONE-DIMENSIONAL PERTURBATIONS; RANK-ONE PERTURBATIONS; COMPACT PERTURBATIONS; OPERATORS;
D O I
10.1090/spmj/1821
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Analytic perturbations are understood here as shifts of the form M-z + F , where M z is the unilateral shift and F is a finite rank operator on the Hardy space over the open unit disk. Here the term "a shift" refers to the multiplication operator M-z on some analytic reproducing kernel Hilbert space. In this paper, first, a natural class of finite rank operators is isolated for which the corresponding perturbations are analytic, and then a complete classification of invariant subspaces of those analytic perturbations is presented. Some instructive examples and several distinctive properties (like cyclicity, essential normality, hyponormality, etc.) of analytic perturbations are also described.
引用
收藏
页码:677 / 695
页数:19
相关论文
共 50 条
  • [21] Normality, non-quasianalyticity and invariant subspaces
    Kellay, K
    Zarrabi, M
    JOURNAL OF OPERATOR THEORY, 2001, 46 (02) : 221 - 250
  • [22] Reproducing kernels and invariant subspaces of the Bergman shift
    Chailos, G
    JOURNAL OF OPERATOR THEORY, 2004, 51 (01) : 181 - 200
  • [23] Description of invariant subspaces in terms of Berezin symbols
    Saltan, Suna
    TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (06) : 2926 - 2934
  • [24] BEURLING TYPE INVARIANT SUBSPACES OF COMPOSITION OPERATORS
    Bose, Snehasish
    Muthukumar, P.
    Sarkar, Jaydeb
    JOURNAL OF OPERATOR THEORY, 2021, 86 (02) : 425 - 438
  • [25] Approximation by group invariant subspaces
    Barbieri, Davide
    Cabrelli, Carlos
    Hernandez, Eugenio
    Molter, Ursula
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 142 : 76 - 100
  • [27] Polycyclic codes as invariant subspaces
    Shi, Minjia
    Li, Xiaoxiao
    Sepasdar, Zahra
    Sole, Patrick
    FINITE FIELDS AND THEIR APPLICATIONS, 2020, 68
  • [28] Invariant subspaces and Deddens algebras
    Lacruz, Miguel
    EXPOSITIONES MATHEMATICAE, 2015, 33 (01) : 116 - 120
  • [29] Principal invariant subspaces theorems
    Xu, Xiao-Ming
    Fang, Xiaochun
    Gao, Fugen
    LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (11) : 1428 - 1436
  • [30] A Bifurcation Lemma for Invariant Subspaces
    Neuberger, John M.
    Sieben, Nandor
    Swift, James W.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2024, 23 (02): : 1610 - 1635