Energy-Conserving Hermite Methods for Maxwell's Equations

被引:0
|
作者
Appelo, Daniel [1 ]
Hagstrom, Thomas [2 ]
Law, Yann-Meing [3 ]
机构
[1] Virginia Tech, Dept Math, Blacksburg, VA 24060 USA
[2] Southern Methodist Univ, Dept Math, Dallas, TX 75275 USA
[3] Polytech Montreal, Dept Math & Ind Engn, Quebec City, PQ H3C 3A7, Canada
基金
美国国家科学基金会;
关键词
Maxwell's equations; High-order methods; Hermite methods; FINITE-DIFFERENCE; MODEL; SCHEMES;
D O I
10.1007/s42967-024-00469-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Energy-conserving Hermite methods for solving Maxwell's equations in dielectric and dispersive media are described and analyzed. In three space dimensions, methods of order 2m to 2m+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2m+2$$\end{document} require (m+1)3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m+1)<^>3$$\end{document} degrees-of-freedom per node for each field variable and can be explicitly marched in time with steps independent of m. We prove the stability for time steps limited only by domain-of-dependence requirements along with error estimates in a special semi-norm associated with the interpolation process. Numerical experiments are presented which demonstrate that Hermite methods of very high order enable the efficient simulation of the electromagnetic wave propagation over thousands of wavelengths.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] An energy-conserving method for stochastic Maxwell equations with multiplicative noise
    Hong, Jialin
    Ji, Lihai
    Zhang, Liying
    Cai, Jiaxiang
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 351 : 216 - 229
  • [2] Energy-conserving explicit and implicit time integration methods for the multi-dimensional Hermite-DG discretization of the Vlasov-Maxwell equations
    Pagliantini, C.
    Manzini, G.
    Koshkarov, O.
    Delzanno, G. L.
    Roytershteyn, V.
    COMPUTER PHYSICS COMMUNICATIONS, 2023, 284
  • [3] Energy-conserving discontinuous Galerkin methods for the Vlasov-Maxwell system
    Cheng, Yingda
    Christlieb, Andrew J.
    Zhong, Xinghui
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 279 : 145 - 173
  • [4] ENERGY-CONSERVING DRYING METHODS
    BRYAND, ET
    PAPER TECHNOLOGY AND INDUSTRY, 1975, 16 (01): : 24 - 29
  • [5] Superconvergence of Energy-Conserving Discontinuous Galerkin Methods for Linear Hyperbolic Equations
    Yong Liu
    Chi-Wang Shu
    Mengping Zhang
    Communications on Applied Mathematics and Computation, 2019, 1 : 101 - 116
  • [6] Superconvergence of Energy-Conserving Discontinuous Galerkin Methods for Linear Hyperbolic Equations
    Liu, Yong
    Shu, Chi-Wang
    Zhang, Mengping
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2019, 1 (01) : 101 - 116
  • [7] Hidden symmetries of energy-conserving differential equations
    Guo, Ann
    Abraham-Shrauner, Barbara
    IMA Journal of Applied Mathematics (Institute of Mathematics and Its Applications), 1993, 51 (02): : 147 - 153
  • [8] Energy-conserving methods for the nonlinear Schrodinger equation
    Barletti, L.
    Brugnano, L.
    Frasca Caccia, Gianluca
    Iavernaro, F.
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 318 : 3 - 18
  • [9] An asymptotic-preserving and energy-conserving particle-in-cell method for Vlasov-Maxwell equations
    Ji, Lijie
    Yang, Zhiguo
    Li, Zhuoning
    Wu, Dong
    Jin, Shi
    Xu, Zhenli
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (06)
  • [10] AN ENERGY-CONSERVING DIFFERENCE SCHEME FOR STORM SURGE EQUATIONS
    SIELECKI, A
    MONTHLY WEATHER REVIEW, 1968, 96 (03) : 150 - &