Single-Atom Copper-Bearing Cerium Oxide Electrocatalysts Embedded in an Integrated System Enable Sustainable Nitrogen Recycling from Natural Water Bodies

被引:1
作者
Jiang, Guangming [1 ,3 ]
Liu, Zixun [1 ]
He, Shuxian [1 ]
Liu, Yinan [1 ]
Tang, Xiangyi [1 ]
Lv, Xiaoshu [1 ]
Dong, Fan [2 ]
Liu, Hong [3 ]
机构
[1] Chongqing Technol & Business Univ, Engn Res Ctr Waste Oil Recovery Technol & Equipmen, Minist Educ, Chongqing 400067, Peoples R China
[2] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Res Ctr Carbon Neutral Environm & Energy Technol, Chengdu 611731, Peoples R China
[3] Univ Chinese Acad Sci, Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing 400714, Peoples R China
来源
ACS ES&T ENGINEERING | 2024年 / 4卷 / 12期
基金
中国国家自然科学基金;
关键词
nitrate pollution remediation; electrocatalytic reduction; single-atom catalysis; nitrogen recycling; copper; NITRATE REDUCTION; REMOVAL;
D O I
10.1021/acsestengg.4c00299
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Electrocatalytic reduction of nitrate (NO<INF>3</INF>-) to ammonia (NH<INF>3</INF>) (NO<INF>3</INF>RR) coupled with NH<INF>3</INF> separation represents a sustainable approach to mitigate nitrate pollution and recycle nitrogen from contaminated water. Nevertheless, this process is deemed impractical for contaminated natural water bodies owing to the limited presence of NO<INF>3</INF>--N (<50 mg L-1) and electrolytes and the relative abundance of scaling ions (Mg2+ and Ca2+). Furthermore, copper (Cu), as the primary NO<INF>3</INF>RR catalyst, generally suffers from NO<INF>2</INF>- accumulation and a prevalence of side hydrogen evolution. Herein, we develop an integrated system comprising sections of NO<INF>3</INF>- enrichment and NO<INF>3</INF>RR and NH<INF>3</INF> collection, alongside a single-atom Cu-bearing CeO<INF>2</INF> catalyst (Cu<INF>1</INF>/CeO<INF>2</INF>) for NO<INF>3</INF>RR. With this system, diluted NO<INF>3</INF>- is extracted from contaminated water using anion-exchange resins and then released into a concentrated NaCl aqueous solution, providing a solution with ample NO<INF>3</INF>--N (similar to 822 mg L-1) and electrolytes (similar to 1.7 M NaCl) while being free of scaling ions. Within this solution, the Cu<INF>1</INF>/CeO<INF>2</INF> demonstrates an exceptional high and steady NH<INF>3</INF>-N production rate of 7.8 g<INF>NH<INF>3</INF>-N</INF> g<INF>Cu</INF>-1 h-1, an NH<INF>3</INF>-N selectivity of 90.1%, and a Faradaic efficiency of 91.3%, outperforming the Cu nanoparticles (1.8 g<INF>NH<INF>3</INF>-N</INF> g<INF>Cu</INF>-1 h-1, 46.3%, and 53.0%). In situ experiments and theoretical computations reveal a dual-site NO<INF>3</INF>RR mechanism involving the electron-deficient Cu<INF>1</INF> site and adjacent oxygen vacancies, which collaborate to promote NO<INF>3</INF>- adsorption and lower conversion barrier while inhibiting hydrogen evolution. Finally, we implemented the integrated system along the Yangtze River, achieving nitrate elimination and nitrogen recycling with a competitive energy consumption of 1.36-1.54 kW h mol<INF>N</INF>-1.
引用
收藏
页码:2912 / 2922
页数:11
相关论文
共 57 条
[1]   First-Principles Kinetic and Spectroscopic Insights into Single-Atom Catalysis [J].
Alexopoulos, Konstantinos ;
Wang, Yifan ;
Vlachos, Dionisios G. .
ACS CATALYSIS, 2019, 9 (06) :5002-+
[2]   Evaluation of a hybrid ion exchange-catalyst treatment technology for nitrate removal from drinking water [J].
Bergquist, Allison M. ;
Choe, Jong Kwon ;
Strathmann, Timothy J. ;
Werth, Charles J. .
WATER RESEARCH, 2016, 96 :177-187
[3]   Nitrate reduction pathways on Cu single crystal surfaces: Effect of oxide and Cl- [J].
Butcher, Dennis P., Jr. ;
Gewirth, Andrew A. .
NANO ENERGY, 2016, 29 :457-465
[4]   Effects of natural water ions and humic acid on catalytic nitrate reduction kinetics using an alumina supported Pd-Cu catalyst [J].
Chaplin, BP ;
Roundy, E ;
Guy, KA ;
Shapley, JR ;
Werth, CJ .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (09) :3075-3081
[5]   Binderless and Oxygen Vacancies Rich FeNi/Graphitized Mesoporous Carbon/Ni Foam for Electrocatalytic Reduction of Nitrate [J].
Chen, Xiaotong ;
Zhang, Ting ;
Kan, Miao ;
Song, Dinggui ;
Jia, Jinping ;
Zhao, Yixin ;
Qian, Xufang .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2020, 54 (20) :13344-13353
[6]   Coordination Symmetry Breaking of Single-Atom Catalysts for Robust and Efficient Nitrate Electroreduction to Ammonia [J].
Cheng, Xue-Feng ;
He, Jing-Hui ;
Ji, Hao-Qing ;
Zhang, Hao-Yu ;
Cao, Qiang ;
Sun, Wu-Ji ;
Yan, Cheng-Lin ;
Lu, Jian-Mei .
ADVANCED MATERIALS, 2022, 34 (36)
[7]   Performance and life cycle environmental benefits of recycling spent ion exchange brines by catalytic treatment of nitrate [J].
Choe, Jong Kwon ;
Bergquist, Allison M. ;
Jeong, Sangjo ;
Guest, Jeremy S. ;
Werth, Charles J. ;
Strathmann, Timothy J. .
WATER RESEARCH, 2015, 80 :267-280
[8]   Spin polarized Fe1-Ti pairs for highly efficient electroreduction nitrate to ammonia [J].
Dai, Jie ;
Tong, Yawen ;
Zhao, Long ;
Hu, Zhiwei ;
Chen, Chien-Te ;
Kuo, Chang-Yang ;
Zhan, Guangming ;
Wang, Jiaxian ;
Zou, Xingyue ;
Zheng, Qian ;
Hou, Wei ;
Wang, Ruizhao ;
Wang, Kaiyuan ;
Zhao, Rui ;
Gu, Xiang-Kui ;
Yao, Yancai ;
Zhang, Lizhi .
NATURE COMMUNICATIONS, 2024, 15 (01)
[9]   Durable Electrocatalytic Reduction of Nitrate to Ammonia over Defective Pseudobrookite Fe2TiO5 Nanofibers with Abundant Oxygen Vacancies [J].
Du, Hongting ;
Guo, Haoran ;
Wang, Kaike ;
Du, Xiangning ;
Beshiwork, Bayu Admasu ;
Sun, Shengjun ;
Luo, Yongsong ;
Liu, Qian ;
Li, Tingshuai ;
Sun, Xuping .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (05)
[10]   Active hydrogen boosts electrochemical nitrate reduction to ammonia [J].
Fan, Kui ;
Xie, Wenfu ;
Li, Jinze ;
Sun, Yining ;
Xu, Pengcheng ;
Tang, Yang ;
Li, Zhenhua ;
Shao, Mingfei .
NATURE COMMUNICATIONS, 2022, 13 (01)