Classical simulation of non-Gaussian bosonic circuits

被引:1
作者
Dias, Beatriz [1 ]
Koenig, Robert [1 ]
机构
[1] Tech Univ Munich, Sch Computat Informat & Technol, Dept Math, D-85748 Garching, Germany
基金
欧洲研究理事会;
关键词
Combinatorial circuits - Gaussian distribution - Gaussian noise (electronic) - Nonlinear optics - Quantum electronics - Quantum optics;
D O I
10.1103/PhysRevA.110.042402
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose efficient classical algorithms which (strongly) simulate the action of bosonic linear optics circuits applied to superpositions of Gaussian states. Our approach relies on an augmented covariance matrix formalism to keep track of relative phases between individual terms in a linear combination. This yields an exact simulation algorithm whose runtime is polynomial in the number of modes and the size of the circuit and quadratic in the number of terms in the superposition. We also present a faster approximate randomized algorithm whose runtime is linear in this number. Our main building blocks are a formula for the triple overlap of three Gaussian states and a fast algorithm for estimating the norm of a superposition of Gaussian states up to a multiplicative error. Our construction borrows from earlier work on simulating quantum circuits in finite-dimensional settings, including, in particular, fermionic linear optics with non-Gaussian initial states and Clifford computations with nonstabilizer initial states. It provides algorithmic access to a practically relevant family of non-Gaussian bosonic circuits.
引用
收藏
页数:24
相关论文
共 47 条
[1]   Improved simulation of stabilizer circuits [J].
Aaronson, S ;
Gottesman, D .
PHYSICAL REVIEW A, 2004, 70 (05) :052328-1
[2]   Performance and structure of single-mode bosonic codes [J].
Albert, Victor V. ;
Noh, Kyungjoo ;
Duivenvoorden, Kasper ;
Young, Dylan J. ;
Brierley, R. T. ;
Reinhold, Philip ;
Vuillot, Christophe ;
Li, Linshu ;
Shen, Chao ;
Girvin, S. M. ;
Terhal, Barbara M. ;
Jiang, Liang .
PHYSICAL REVIEW A, 2018, 97 (03)
[3]  
Arnold V. I., 2013, Mathematical Methods of Classical Mechanics, V60, P271
[4]   The real symplectic groups in quantum mechanics and optics [J].
Arvind ;
Dutta, B ;
Mukunda, N ;
Simon, R .
PRAMANA-JOURNAL OF PHYSICS, 1995, 45 (06) :471-497
[5]   Quantum Fidelity for Arbitrary Gaussian States [J].
Banchi, Leonardo ;
Braunstein, Samuel L. ;
Pirandola, Stefano .
PHYSICAL REVIEW LETTERS, 2015, 115 (26)
[6]   All-Gaussian Universality and Fault Tolerance with the Gottesman-Kitaev-Preskill Code [J].
Baragiola, Ben Q. ;
Pantaleoni, Giacomo ;
Alexander, Rafael N. ;
Karanjai, Angela ;
Menicucci, Nicolas C. .
PHYSICAL REVIEW LETTERS, 2019, 123 (20)
[7]   Quantum error correction against photon loss using multicomponent cat states [J].
Bergmann, Marcel ;
van Loock, Peter .
PHYSICAL REVIEW A, 2016, 94 (04)
[8]   Fast Simulation of Bosonic Qubits via Gaussian Functions in Phase Space [J].
Bourassa, J. Eli ;
Quesada, Nicolas ;
Tzitrin, Ilan ;
Szava, Antal ;
Isacsson, Theodor ;
Izaac, Josh ;
Sabapathy, Krishna Kumar ;
Dauphinais, Guillaume ;
Dhand, Ish .
PRX QUANTUM, 2021, 2 (04)
[9]   Simulation of quantum circuits by low-rank stabilizer decompositions [J].
Bravyi, Sergey ;
Browne, Dan ;
Calpin, Padraic ;
Campbell, Earl ;
Gosset, David ;
Howard, Mark .
QUANTUM, 2019, 3
[10]   Complexity of Quantum Impurity Problems [J].
Bravyi, Sergey ;
Gosset, David .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 356 (02) :451-500