SV-3D BSC: Semantic Communications from Single View to 3D Reconstruction

被引:0
作者
Wang, Congyan [1 ]
Xia, Hao [1 ]
Ma, Wenbo [1 ]
He, Xitao [1 ]
Chen, Mingkai [1 ]
Zheng, Kaipeng [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Key Lab Broadband Wireless Commun & Sensor Networ, Nanjing 210003, Peoples R China
来源
2024 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA, ICCC | 2024年
基金
中国国家自然科学基金;
关键词
Metaverse; virtual reality; semantic communication; 3D modeling; neural radiance fields; generative adversarial network;
D O I
10.1109/ICCC62479.2024.10681933
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the exploration of the virtual world, 3D reconstruction has drawn increasing attention. To achieve largescale and low-latency virtual world interaction, data volume compression and visual experience are indispensable, but they tend to conflict in practice. Based on the above issues, we propose a semantic communication-based image transmission and 3D generation scheme (SV-3D BSC). First, we perform semantic segmentation on the image at the transmitter. In addition, at the receiver, we analyze the semantic symbols based on a common knowledge base and preliminarily restore the image through a generative adversarial network (GAN). Next, the restored image is further optimized for generating a Neural Radiance Fields (NeRF) representation. This scheme can greatly compress the data volume of virtual interaction and generate exquisite 3D models. Finally, experiments have shown that our scheme saves a lot of bandwidth and generates reasonable and colorful 3D models.
引用
收藏
页数:6
相关论文
共 19 条
  • [1] Barnsley M.F., 1993, Fractals Everywhere, V2nd
  • [2] Emerging Properties in Self-Supervised Vision Transformers
    Caron, Mathilde
    Touvron, Hugo
    Misra, Ishan
    Jegou, Herve
    Mairal, Julien
    Bojanowski, Piotr
    Joulin, Armand
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 9630 - 9640
  • [3] Efficient Geometry-aware 3D Generative Adversarial Networks
    Chan, Eric R.
    Lin, Connor Z.
    Chan, Matthew A.
    Nagano, Koki
    Pan, Boxiao
    de Mello, Shalini
    Gallo, Orazio
    Guibas, Leonidas
    Tremblay, Jonathan
    Khamis, Sameh
    Karras, Tero
    Wetzstein, Gordon
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 16102 - 16112
  • [4] Learning Implicit Fields for Generative Shape Modeling
    Chen, Zhiqin
    Zhang, Hao
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 5932 - 5941
  • [5] A Point Set Generation Network for 3D Object Reconstruction from a Single Image
    Fan, Haoqiang
    Su, Hao
    Guibas, Leonidas
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 2463 - 2471
  • [6] Mesh R-CNN
    Gkioxari, Georgia
    Malik, Jitendra
    Johnson, Justin
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 9784 - 9794
  • [7] Hong YC, 2024, Arxiv, DOI arXiv:2311.04400
  • [8] Semantics-Empowered Communication for Networked Intelligent Systems
    Kountouris M.
    Pappas N.
    [J]. IEEE Communications Magazine, 2021, 59 (06) : 96 - 102
  • [9] Kumar J, 2011, COMM COM INF SC, V250, P584
  • [10] Kumar Jeet, 2012, International Journal on Computer Science and Engineering, V4, P1468