Generalized Hamiltonian and Lagrangian aspects of a model for virus-tumor interaction in oncolytic virotherapy

被引:0
作者
Guha, Partha [1 ]
Ghose-Choudhury, Anindya [2 ]
机构
[1] Khalifa Univ Sci & Technol, Zone-1,Main Campus,PO 127788, Abu Dhabi, U Arab Emirates
[2] Diamond Harbour Womens Univ, Dept Phys, Sarisha, India
关键词
cosymplectic geometry; first integrals; Jacobi last multiplier; Poincar & eacute; -Cartan form; time-dependent Hamiltonian; LAST MULTIPLIER; JACOBI; CELLS;
D O I
10.1002/mma.10538
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the generalized Hamiltonian structure of a system of first-order ordinary differential equations for the Jenner et al. system (Letters in Biomathematics 5 (2018), no. S1, S117-S136). The system of equations is used for modeling the interaction of an oncolytic virus with a tumor cell population. Our analysis is based on the existence of a Jacobi last multiplier and a time-dependent first integral. Suitable conditions on the model parameters allow for the reduction of the problem to a planar system of equations, and the time-dependent Hamiltonian flows are described. The geometry of the Hamiltonian flows is also investigated using the symplectic and cosymplectic methods.
引用
收藏
页码:4173 / 4184
页数:12
相关论文
共 26 条
[1]   Modeling of cancer virotherapy with recombinant measles viruses [J].
Bajzer, Zeljko ;
Carr, Thomas ;
Josic, Kresimir ;
Russell, Stephen J. ;
Dingli, David .
JOURNAL OF THEORETICAL BIOLOGY, 2008, 252 (01) :109-122
[2]   A SURVEY ON COSYMPLECTIC GEOMETRY [J].
Cappelletti-Montano, Beniamino ;
De Nicola, Antonio ;
Yudin, Ivan .
REVIEWS IN MATHEMATICAL PHYSICS, 2013, 25 (10)
[3]   Jacobi Multipliers in Integrability and the Inverse Problem of Mechanics [J].
Carinena, Jose F. ;
Fernandez-Nunez, Jose .
SYMMETRY-BASEL, 2021, 13 (08)
[4]  
Chinea D., 1991, Publ. Inst. Math. (Belgr.) (N.S.), V50, P163
[5]  
CHINEA D, 1991, COMMENT MATH U CAROL, V32, P383
[6]   Application of Jacobi's last multiplier for construction of Hamiltonians of certain biological systems [J].
Choudhury, A. Ghose ;
Guha, Partha .
CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2012, 10 (02) :398-404
[7]   On the Jacobi Last Multiplier, integrating factors and the Lagrangian formulation of differential equations of the Painleve-Gambier classification [J].
Choudhury, A. Ghose ;
Guha, Partha ;
Khanra, Barun .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 360 (02) :651-664
[8]   The Hamiltonian description of a second-order ODE [J].
del Castillo, G. F. Torres .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (26)
[9]   On time-dependent Hamiltonian realizations of planar and nonplanar systems [J].
Esen, Ogul ;
Guha, Partha .
JOURNAL OF GEOMETRY AND PHYSICS, 2018, 127 :32-45
[10]   Bi-Hamiltonian Structures of 3D Chaotic Dynamical Systems [J].
Esen, Ogul ;
Choudhury, Anindya Ghose ;
Guha, Partha .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (13)