Fluid flow and heat transfer in porous media have been extensively studied due to their importance in numerous industrial and environmental applications. This review provides a comprehensive analysis of numerical and experimental approaches, presenting a multiscale perspective that bridges molecular, pore, and macroscopic levels. This study emphasizes the importance of understanding the underlying principles governing these processes, as this knowledge is essential for optimizing and innovating applications ranging from energy systems to environmental engineering. The review synthesizes key theoretical frameworks, including Darcy's law, the Brinkman equation, and volume-averaging methods, offering a robust foundation for interpreting complex interactions in porous media. A novel aspect of this work is the integration of experimental and numerical insights to address challenges such as heterogeneity, anisotropy, and scale effects, demonstrating their complementary roles in advancing this field. Additionally, the review highlights emerging methodologies, including advanced pore-scale modeling, the lattice Boltzmann method, and machine learning, as transformative tools for overcoming existing limitations and exploring future directions. By identifying critical knowledge gaps and proposing innovative solutions, this article serves as a vital resource for researchers and practitioners, fostering interdisciplinary approaches and paving the way for cutting-edge advancements in the study of fluid flow and heat transfer in porous media.