Generating Synthesized Fluorescein Angiography Images From Color Fundus Images by Generative Adversarial Networks for Macular Edema Assessment

被引:2
作者
Xie, Xiaoling [1 ,2 ]
Jiachu, Danba [3 ]
Liu, Chang [5 ]
Xie, Meng [4 ]
Guo, Jinming [1 ,2 ]
Cai, Kebo [4 ]
Li, Xiangbo [4 ]
Mi, Wei [4 ]
Ye, Hehua [4 ]
Luo, Li [1 ,2 ]
Yang, Jianlong [5 ]
Zhang, Mingzhi [1 ,2 ]
Zheng, Ce [4 ]
机构
[1] Shantou Univ, Joint Shantou Int Eye Ctr, Shantou 515041, Guangdong, Peoples R China
[2] Shantou Univ, Chinese Univ Hong Kong, Med Coll, Shantou 515041, Guangdong, Peoples R China
[3] Kandze Prefecture Peoples Hosp, Kham Eye Ctr, Kangding, Peoples R China
[4] Shanghai Jiao Tong Univ, Xinhua Hosp, Sch Med, Dept Ophthalmol, Shanghai 200092, Peoples R China
[5] Shanghai Jiao Tong Univ, Sch Biomed Engn, 3 Teaching Bldg,1954 Huashan RD, Shanghai 200000, Peoples R China
来源
TRANSLATIONAL VISION SCIENCE & TECHNOLOGY | 2024年 / 13卷 / 09期
关键词
generative adversarial networks; deep learning; fluorescein angiography; color fundus; macular edema; RETINAL VEIN OCCLUSION;
D O I
10.1167/tvst.13.9.26
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose: To assess the feasibility of generating synthetic fluorescein angiography (FA) images from color fundus (CF) images using pixel-to-pixel generative adversarial network (pix2pixGANs) for clinical applications. Research questions addressed image realism to retinal specialists and utility for assessing macular edema (ME) in Retinal Vein Occlusion (RVO) eyes. Methods: We used a registration-guided pix2pixGANs method trained on the CF-FA dataset from Kham Eye Centre, Kandze Prefecture People's Hospital. A visual Turing test confirmed the realism of synthetic images without novel artifacts. We then assessed the synthetic FA images for assessing ME. Finally, we quantitatively evaluated the synthetic images using Fr & eacute;chet Inception distance (FID) and structural similarity measures (SSIM). Results: The raw development dataset had 881 image pairs from 349 subjects. Our approach is capable of generating realistic FA images because small vessels are clearly visible and sharp within one optic disc diameter around the macula. Two retinal specialists agreed that more than 85% of synthetic FA images have good or excellent image quality. For ME detection, accuracy was similar for real and synthetic images. FID demonstrated a 38.9% improvement over the previous state-of-the-art (SOTA), and SSIM reached 0.78 compared to the previous SOTA's 0.67. Conclusions: We developed a pix2pixGANs model translating FA images from label-free CF images, yielding reliable synthetic FA images. This suggests potential for noninvasive evaluation of ME in RVO eyes using pix2pix GANs techniques. Translational Relevance: Pix2pixGANs techniques have the potential to assist in the noninvasive clinical assessment of ME in RVO eyes.
引用
收藏
页数:12
相关论文
共 38 条
[1]   Standard Care vs Corticosteroid for Retinal Vein Occlusion (SCORE) Study System for Evaluation of Stereoscopic Color Fundus Photographs and Fluorescein Angiograms SCORE Study Report 9 [J].
Blodi, Barbara A. ;
Domalpally, Amitha ;
Scott, Ingrid U. ;
Ip, Michael S. ;
Oden, Neal L. ;
Elledge, Julee ;
Warren, Kelly ;
Altaweel, Michael M. ;
Kim, Judy E. ;
Van Veldhuisen, Paul C. .
ARCHIVES OF OPHTHALMOLOGY, 2010, 128 (09) :1140-1145
[2]   A Partial Intensity Invariant Feature Descriptor for Multimodal Retinal Image Registration [J].
Chen, Jian ;
Tian, Jie ;
Lee, Noah ;
Zheng, Jian ;
Smith, R. Theodore ;
Laine, Andrew F. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2010, 57 (07) :1707-1718
[3]   Widefield OCT-Angiography and Fluorescein Angiography Assessments of Nonperfusion in Diabetic Retinopathy and Edema Treated with Anti-Vascular Endothelial Growth Factor [J].
Couturier, Aude ;
Rey, Pierre-Antoine ;
Erginay, Ali ;
Lavia, Carlo ;
Bonnin, Sophie ;
Dupas, Benedicte ;
Gaudric, Alain ;
Tadayoni, Ramin .
OPHTHALMOLOGY, 2019, 126 (12) :1685-1694
[4]   Retinal Vein Occlusion: Beyond the Acute Event [J].
Ehlers, Justis P. ;
Fekrat, Sharon .
SURVEY OF OPHTHALMOLOGY, 2011, 56 (04) :281-299
[5]   Retinal Vein Occlusions Preferred Practice Pattern [J].
Flaxel, Christina J. ;
Adelman, Ron A. ;
Bailey, Steven T. ;
Fawzi, Amani ;
Lim, Jennifer I. ;
Vemulakonda, Gurunadh A. ;
Ying, Gui-shang .
OPHTHALMOLOGY, 2020, 127 (02) :P288-P320
[6]   Automated assessment of diabetic retinal image quality based on clarity and field definition [J].
Fleming, AD ;
Philip, S ;
Goatman, KA ;
Olson, JA ;
Sharp, PF .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2006, 47 (03) :1120-1125
[7]   Exploring the Potential of Generative Adversarial Networks for Synthesizing Radiological Images of the Spine to be Used in In Silico Trials [J].
Galbusera, Fabio ;
Niemeyer, Frank ;
Seyfried, Maike ;
Bassani, Tito ;
Casaroli, Gloria ;
Kienle, Annette ;
Wilke, Hans-Joachim .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2018, 6
[8]  
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672
[9]  
Haifeng Liu, 2011, 2011 International Conference on Electronic & Mechanical Engineering and Information Technology (EMEIT 2011), P355, DOI 10.1109/EMEIT.2011.6022951
[10]   FUNDUS CHANGES IN CENTRAL RETINAL VEIN OCCLUSION [J].
Hayreh, Sohan Singh ;
Zimmerman, M. Bridget .
RETINA-THE JOURNAL OF RETINAL AND VITREOUS DISEASES, 2015, 35 (01) :29-42