共 50 条
Genetic Ablation of Sarm1 Mitigates Disease Acceleration after Traumatic Brain Injury in the SOD1G93A Transgenic Mouse Model of Amyotrophic Lateral Sclerosis
被引:0
|作者:
Dogan, Elif O.
[1
]
Simonini, Sean R.
[1
]
Bouley, James
[1
]
Weiss, Alexandra
[1
]
Brown Jr, Robert H.
[1
]
Henninger, Nils
[1
,2
]
机构:
[1] Univ Massachusetts, Chan Med Sch, Dept Neurol, Worcester, MA USA
[2] Univ Massachusetts, Chan Med Sch, Dept Psychiat, Worcester, MA USA
来源:
关键词:
MOTOR-NEURON DEGENERATION;
ALS;
RELEASE;
PROTEIN;
MICE;
D O I:
10.1002/ana.27174
中图分类号:
R74 [神经病学与精神病学];
学科分类号:
摘要:
ObjectiveApproximately 20% of familial cases of amyotrophic lateral sclerosis (ALS) are caused by mutations in the gene encoding superoxide dismutase 1 (SOD1). Epidemiological data have identified traumatic brain injury (TBI) as an exogenous risk factor for ALS; however, the mechanisms by which TBI may worsen SOD1 ALS remain largely undefined.MethodsWe sought to determine whether repetitive TBI (rTBI) accelerates disease onset and progression in the transgenic SOD1G93A mouse ALS model, and whether loss of the primary regulator of axonal degeneration sterile alpha and TIR motif containing 1 (Sarm1) mitigates the histological and behavioral pathophysiology. We subjected wild-type (n = 23), Sarm1 knockout (KO; n = 17), SOD1G93A (n = 19), and SOD1G93AxSarm1KO (n = 26) mice of both sexes to rTBI or sham surgery at age 64 days (62-68 days). Body weight and ALS-deficit score were serially assessed up to 17 weeks after surgery and histopathology assessed in layer V of the primary motor cortex at the study end point.ResultsIn sham injured SOD1G93A mice, genetic ablation of Sarm1 did not attenuate axonal loss, improve neurological deficits, or survival. The rTBI accelerated onset of G93A-SOD1 ALS, as indicated by accentuated body weight loss, earlier onset of hindlimb tremor, and shortened survival. The rTBI also triggered TDP-43 mislocalization, enhanced axonal and neuronal loss, microgliosis, and astrocytosis. Loss of Sarm1 significantly diminished the impact of rTBI on disease progression and rescued rTBI-associated neuropathology.InterpretationSARM1-mediated axonal death pathway promotes pathogenesis after TBI in SOD1G93A mice suggesting that anti-SARM1 therapeutics are a viable approach to preserve neurological function in injury-accelerated G93A-SOD1 ALS. ANN NEUROL 2025
引用
收藏
页数:13
相关论文