Genetic Ablation of Sarm1 Mitigates Disease Acceleration after Traumatic Brain Injury in the SOD1G93A Transgenic Mouse Model of Amyotrophic Lateral Sclerosis

被引:0
|
作者
Dogan, Elif O. [1 ]
Simonini, Sean R. [1 ]
Bouley, James [1 ]
Weiss, Alexandra [1 ]
Brown Jr, Robert H. [1 ]
Henninger, Nils [1 ,2 ]
机构
[1] Univ Massachusetts, Chan Med Sch, Dept Neurol, Worcester, MA USA
[2] Univ Massachusetts, Chan Med Sch, Dept Psychiat, Worcester, MA USA
关键词
MOTOR-NEURON DEGENERATION; ALS; RELEASE; PROTEIN; MICE;
D O I
10.1002/ana.27174
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
ObjectiveApproximately 20% of familial cases of amyotrophic lateral sclerosis (ALS) are caused by mutations in the gene encoding superoxide dismutase 1 (SOD1). Epidemiological data have identified traumatic brain injury (TBI) as an exogenous risk factor for ALS; however, the mechanisms by which TBI may worsen SOD1 ALS remain largely undefined.MethodsWe sought to determine whether repetitive TBI (rTBI) accelerates disease onset and progression in the transgenic SOD1G93A mouse ALS model, and whether loss of the primary regulator of axonal degeneration sterile alpha and TIR motif containing 1 (Sarm1) mitigates the histological and behavioral pathophysiology. We subjected wild-type (n = 23), Sarm1 knockout (KO; n = 17), SOD1G93A (n = 19), and SOD1G93AxSarm1KO (n = 26) mice of both sexes to rTBI or sham surgery at age 64 days (62-68 days). Body weight and ALS-deficit score were serially assessed up to 17 weeks after surgery and histopathology assessed in layer V of the primary motor cortex at the study end point.ResultsIn sham injured SOD1G93A mice, genetic ablation of Sarm1 did not attenuate axonal loss, improve neurological deficits, or survival. The rTBI accelerated onset of G93A-SOD1 ALS, as indicated by accentuated body weight loss, earlier onset of hindlimb tremor, and shortened survival. The rTBI also triggered TDP-43 mislocalization, enhanced axonal and neuronal loss, microgliosis, and astrocytosis. Loss of Sarm1 significantly diminished the impact of rTBI on disease progression and rescued rTBI-associated neuropathology.InterpretationSARM1-mediated axonal death pathway promotes pathogenesis after TBI in SOD1G93A mice suggesting that anti-SARM1 therapeutics are a viable approach to preserve neurological function in injury-accelerated G93A-SOD1 ALS. ANN NEUROL 2025
引用
收藏
页码:963 / 975
页数:13
相关论文
共 50 条
  • [1] Epothilone D accelerates disease progression in the SOD1G93A mouse model of amyotrophic lateral sclerosis
    Clark, J. A.
    Blizzard, C. A.
    Breslin, M. C.
    Yeaman, E. J.
    Lee, K. M.
    Chuckowree, J. A.
    Dickson, T. C.
    NEUROPATHOLOGY AND APPLIED NEUROBIOLOGY, 2018, 44 (06) : 590 - 605
  • [2] Comparative morphometric analysis of microglia in the spinal cord of SOD1G93A transgenic mouse model of amyotrophic lateral sclerosis
    Ohgomori, Tomohiro
    Yamada, Jun
    Takeuchi, Hideyuki
    Kadomatsu, Kenji
    Jinno, Shozo
    EUROPEAN JOURNAL OF NEUROSCIENCE, 2016, 43 (10) : 1340 - 1351
  • [3] Neuroprotective effect of bexarotene in the SOD1G93A mouse model of amyotrophic lateral sclerosis
    Riancho, Javier
    Ruiz-Soto, Maria
    Berciano, Maria T.
    Berciano, Jose
    Lafarga, Miguel
    FRONTIERS IN CELLULAR NEUROSCIENCE, 2015, 9
  • [4] Transcranial Focused Ultrasound Modifies Disease Progression in SOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis
    Hong, Zhongqiu
    Yi, Shasha
    Deng, Miaoqin
    Zhong, Yongsheng
    Zhao, Yun
    Li, Lili
    Zhou, Hui
    Xiao, Yang
    Hu, Xiquan
    Niu, Lili
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2025, 72 (02) : 191 - 201
  • [5] Therapeutic effects of hirsutella sinensis on the disease onset and progression of amyotrophic lateral sclerosis in SOD1G93A transgenic mouse model
    Shang, Hai-Yan
    Zhang, Jing-Jing
    Fu, Zhen-Fa
    Liu, Yu-Fei
    Li, Song
    Chen, Sheng
    Le, Wei-Dong
    CNS NEUROSCIENCE & THERAPEUTICS, 2020, 26 (01) : 90 - 100
  • [6] EXCITABILITY PROPERTIES OF MOUSE MOTOR AXONS IN THE MUTANT SOD1G93A MODEL OF AMYOTROPHIC LATERAL SCLEROSIS
    Boerio, Delphine
    Kalmar, Bernadett
    Greensmith, Linda
    Bostock, Hugh
    MUSCLE & NERVE, 2010, 41 (06) : 774 - 784
  • [7] FATIGABILITY OF SPINAL REFLEX TRANSMISSION IN A MOUSE MODEL (SOD1G93A) OF AMYOTROPHIC LATERAL SCLEROSIS
    Schomburg, Eike D.
    Steffens, Heinz
    Zschuentzsch, Jana
    Dibaj, Payam
    Keller, Bernhard U.
    MUSCLE & NERVE, 2011, 43 (02) : 230 - 236
  • [8] Comparative study of behavioural tests in the SOD1G93A mouse model of amyotrophic lateral sclerosis
    Olivan, Sara
    Cristina Calvo, Ana
    Rando, Amaya
    Jesus Munoz, Maria
    Zaragoza, Pilar
    Osta, Rosario
    EXPERIMENTAL ANIMALS, 2015, 64 (02) : 147 - 153
  • [9] Neuroprotective effects of diallyl trisulfide in SOD1-G93A transgenic mouse model of amyotrophic lateral sclerosis
    Guo, Yansu
    Zhang, Kunxi
    Wang, Qian
    Li, Zhongyao
    Yin, Yunxia
    Xu, Qingmei
    Duan, Weisong
    Li, Chunyan
    BRAIN RESEARCH, 2011, 1374 : 110 - 115
  • [10] Cromolyn sodium delays disease onset and is neuroprotective in the SOD1G93A Mouse Model of amyotrophic lateral sclerosis
    Granucci, Eric J.
    Griciuc, Ana
    Mueller, Kaly A.
    Mills, Alexandra N.
    Le, Hoang
    Dios, Amanda M.
    McGinty, Danielle
    Pereira, Joao
    Elmaleh, David
    Berry, James D.
    Paganoni, Sabrina
    Cudkowicz, Merit E.
    Tanzi, Rudolph E.
    Sadri-Vakili, Ghazaleh
    SCIENTIFIC REPORTS, 2019, 9 (1)