Picolensing as a probe of primordial black hole dark matter

被引:0
|
作者
Fedderke, Michael A. [1 ]
Sibiryakov, Sergey [1 ,2 ]
机构
[1] Perimeter Inst Theoret Phys, 31 Caroline St North, Waterloo, ON N2L 2Y5, Canada
[2] McMaster Univ, Dept Phys & Astron, 1280 Main St West, Hamilton, ON L8S 4M1, Canada
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
GAMMA-RAY BURSTS; INTERPLANETARY NETWORK LOCALIZATIONS; MASS; LIMITS; CATALOG; ALERT; BAT;
D O I
10.1103/PhysRevD.111.063060
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The gravitational-lensing parallax of gamma-ray bursts (GRBs) is an intriguing probe of primordial black hole (PBH) dark matter in the asteroid-mass window, 2 x 10-16Mo $ MPBH $ 5 x 10-12Mo. Recent work in the literature has shown exciting potential reach for this "picolensing" signal if a future space mission were to fly two x-/gamma-ray detectors in the Swift/BAT class, with interspacecraft separation baselines on the order of the Earth-Moon distance. We revisit these projections with a view to understanding their robustness to various uncertainties related to GRBs. Most importantly, we investigate the impact of uncertainties in observed GRB angular sizes on reach projections for a future mission. Overall, we confirm that picolensing shows great promise to explore the asteroid-mass window; however, we find that previous studies may have been too optimistic with regard to the baselines required. Detector baselines on the order of at least the Earth-L2 distance would make such a mission more robust to GRB size uncertainties; baselines on the order of an astronomical unit (AU) would additionally enable reach that equals or exceeds existing microlensing constraints up to MPBH 2 x 10-8Mo.
引用
收藏
页数:39
相关论文
共 50 条
  • [1] Seven hints for primordial black hole dark matter
    Clesse, Sebastien
    Garcia-Bellido, Juan
    PHYSICS OF THE DARK UNIVERSE, 2018, 22 : 137 - 146
  • [2] Primordial black hole dark matter and the LIGO/Virgo observations
    Jedamzik, Karsten
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2020, (09):
  • [3] Eliminating the LIGO bounds on primordial black hole dark matter
    Boehm, Celine
    Kobakhidze, Archil
    O'Hare, Ciaran A. J.
    Picker, Zachary S. C.
    Sakellariadou, Mairi
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2021, (03):
  • [4] Primordial Black Hole Dark Matter Simulations Using PopSyCLE
    Pruett, Kerianne
    Dawson, William
    Medford, Michael S.
    Lu, Jessica R.
    Lam, Casey
    Perkins, Scott
    McGill, Peter
    Golovich, Nathan
    Chapline, George
    ASTROPHYSICAL JOURNAL, 2024, 970 (02)
  • [5] Primordial black hole dark matter from single field inflation
    Ballesteros, Guillermo
    Taoso, Marco
    PHYSICAL REVIEW D, 2018, 97 (02)
  • [6] Primordial-black-hole mergers in dark-matter spikes
    Nishikawa, Hiroya
    Kovetz, Ely D.
    Kamionkowski, Marc
    Silk, Joseph
    PHYSICAL REVIEW D, 2019, 99 (04)
  • [7] Probing Primordial Black Hole Dark Matter with Gravitational Waves
    Kovetz, Ely D.
    PHYSICAL REVIEW LETTERS, 2017, 119 (13)
  • [8] Primordial Black Holes as Dark Matter: Recent Developments
    Carr, Bernard
    Kuehnel, Florian
    ANNUAL REVIEW OF NUCLEAR AND PARTICLE SCIENCE, VOL 70, 2020, 70 : 355 - 394
  • [9] Neutrino and Positron Constraints on Spinning Primordial Black Hole Dark Matter
    Dasgupta, Basudeb
    Laha, Ranjan
    Ray, Anupam
    PHYSICAL REVIEW LETTERS, 2020, 125 (10)
  • [10] Simulating binary primordial black hole mergers in dark matter halos
    Aljaf, Muhsin
    Cholis, Ilias
    PHYSICAL REVIEW D, 2025, 111 (06)