Lemming and Vole Cycles: A New Intrinsic Model

被引:0
|
作者
Levay, Elizabeth A. [1 ,2 ]
Nasser, Helen [1 ,2 ]
Zelko, Matthew D. [2 ]
Penman, Jim [2 ]
Johns, Terrance G. [1 ,2 ]
机构
[1] La Trobe Univ, Sch Psychol & Publ Hlth, Melbourne, Vic, Australia
[2] Epigenes Australia Pty Ltd, Melbourne, Vic, Australia
来源
ECOLOGY AND EVOLUTION | 2024年 / 14卷 / 10期
关键词
delayed-density dependence; epigenetics; hormones; lemming; population cycles; vole; POPULATION-CYCLES; MOLECULAR-MECHANISMS; CHITTY HYPOTHESIS; DYNAMICS; DEMOGRAPHY; PREDATION; GRADIENT; HOKKAIDO; CLIMATE; BIOLOGY;
D O I
10.1002/ece3.70440
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
It is 100 years since the first paper described the multiannual cycles in Arctic rodents and lagomorphs. The mechanisms driving population cycles in animals like lemmings and voles are complex, often attributed to extrinsic factors, such as food availability and quality, pathogens, parasites and/or predators. While extrinsic factors provide insights into population cycles, none fully explain the phenomenon. We propose an underlying innate, intrinsic mechanism, based on epigenetic regulation, that drives population cycles under harsh arctic conditions. We propose that epigenetically driven phenotypic changes associated with sexual development, growth and behaviour accumulate over time in offspring, eventually producing a phase change from rising population density to eventual population collapse. Under this hypothesis, and unlike previous hypotheses, extrinsic factors modify population cycles but would not be primary drivers. The interaction between our intrinsic cycle and extrinsic factors explains established phenomena like delayed-density dependence, whereby population growth is controlled by time-dependent negative feedback. We advocate integrating a century of field research with the latest epigenetic analysis to better understand the drivers of population cycles. It is 100 years since the first paper described the recurring nature of Arctic population cycles, yet the mechanistic drivers of these are still not well understood. This paper challenges researchers to consider a new paradigm, with reference to the role of epigenetics in the cycling process. We provide a testable hypothesis describing a series of hormonal/epigenetic steps that form an intrinsic cycle.image
引用
收藏
页数:9
相关论文
共 50 条